[1] Yamaguchi-shinozaki K, Koizumi M, Urao S, et al. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein[J]. Plant and Cell Physiology, 1992, 33(3): 217-224.DOI:10.1093/oxfordjournals.pcp.a078243. [2] 向旭,傅家瑞. 脱落酸应答基因的表达调控及其与逆境胁迫的关系[J]. 植物学通报, 1998, 15(3): 11-16.DOI:10.3969/j.issn.1674-3466.1998.03.003. [3] Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, et al. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana[J]. Gene, 1993, 129(2): 175-182.DOI:10.1016/0378-1119(93)90266-6. [4] Andeme Ondzighi C, Christopher D A, Cho E J, et al. Arabidopsis protein disulfide isomerase-5 inhibits Cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds[J]. Plant Cell, 2008, 20(8): 2205-2220.DOI:10.1105/tpc.108.058339. [5] Yamada K, Matsushima R, Nishimura M, et al. A slow maturation of a Cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves[J]. Plant Physiology, 2001, 127(4):1626-1634.DOI:10.1104/pp.010551. [6] Nylander M, Svensson J, Palva E T, et al. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana[J]. Plant Molecular Biology, 2001, 45(3): 263-279.DOI:10.1023/a:1006469128280. [7] Gilmour S J, Artus N N, Thomashow M F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana[J]. Plant Molecular Biology, 1992, 18(1): 13-21.DOI:10.1007/BF00018452. [8] Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd 29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants[J]. Molecilar and General Genetics, 1993, 236(2/3): 331-340.DOI:10.1007/BF00277130. [9] Horvath D P, McLarney B K, Thomashow M F. Regulation of Arabidopsis thaliana L. (Heyn) cor 78 in response to low temperature[J]. Plant Physiology, 1993, 103(4): 1047-1053.DOI:10.1104/pp.103.4.1047. [10] Nordin K, Vahala T, Palva E T. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh.[J]. Plant Molecular Biology, 1993, 21: 641-653.DOI:10.1007/BF00014547. [11] Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, et al. An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration[J]. Plant and Cell Physiology, 2000, 41(7): 898-903.DOI:10.1093/pcp/pcd010. [12] Aubert Y, Vile D, Pervent M, et al. RD 20 , a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2010, 51(12): 1975-1987.DOI:10.1093/pcp/pcq155. [13] Poxleitner M, Rogers S W, Lacey Samuels A L, et al. A role for caleosin in degradation of oil-body storage lipid during seed germination[J]. The Plant Journal, 2006, 47(6): 917-933.DOI:10.1111/j.1365-313X.2006.02845.x. [14] Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd 22 , a gene responsive to dehydration stress in Arabidopsis thaliana[J]. Molecular and General Genetics, 1993, 238(1/2): 17-25.DOI:10.1007/BF00279525. [15] 郑磊. 西伯利亚蓼(Polygonum sibiricum) rd 22 基因的克隆、表达与功能验证[D]. 哈尔滨: 东北林业大学, 2007. [16] 李慧玉, 林士杰, 王珊, 等. 柽柳rd 22 基因的序列分析及耐盐性研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(6): 95-101.DOI:10.13207/j.cnki.jnwafu.2010.06.022. [17] 黄旭新, 侯佩臣, 丁明全, 等. 秋茄KcRD 22 基因的克隆与功能分析[J]. 基因组学与应用生物学, 2011, 30(4): 273-280.DOI:10.3969/j.issn.1674-568X.2011.04.003. [18] Phillips K, Ludidi N. Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD 22 -like genes[J]. Scientific Reports, 2017, 7(1): 8821.DOI:10.1038/s41598-017-08976-x. [19] 郑磊, 刘关君, 杨传平. 西伯利亚蓼rd 22 基因的克隆与序列分析[J]. 植物研究, 2007, 27(2): 212-217.DOI:10.3969/j.issn.1673-5102.2007.02.019. [20] Fujita M, Fujita Y, Maruyama K, et al. A dehydration-induced NAC protein, RD 26 , is involved in a novel ABA-dependent stress-signaling pathway[J]. The Plant Journal, 2004, 39(6): 863-876.DOI:10.1111/j.1365-313X.2004.02171.x. [21] Tran L S P, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell, 2004, 16(9): 2481-2498.DOI:10.1105/tpc.104.022699. [22] Reizer J, Reizer A, Saier M H. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins[J]. Critical Reviews in Biochemistry and Molecular Biology, 1993, 28(3): 235-257.DOI:10.3109/10409239309086796. [23] Bozovic V, Svensson J, Schmitt J, et al. Dehydrins (LTI29, LTI30, and COR47) from Arabidopsis thaliana expressed in escherichia coli protect thylakoid membranes during freezing[J]. Journal of the Serbian Chemical Society, 2013, 78(8): 1149-1160.DOI:10.2298/JSC121127017B. [24] Puhakainen T, Hess M W, Mäkelä P, et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis[J]. Plant Molecular Biology, 2004, 54(5): 743-753.DOI:10.1023/B.PLAN.0000040903.66496.a4. [25] Msanne J, Lin J S, Stone J M, et al. Characterization of abiotic stress-responsive Arabidopsis thaliana RD 29 A and RD29B genes and evaluation of transgenes[J]. Planta, 2011, 234(1): 97-107.DOI:10.1007/s00425-011-1387-y. [26] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. The Plant Cell, 1994, 6(2): 251-264.DOI:10.1105/tpc.6.2.251. [27] Nakashima K, Shinwari Z K, Sakuma Y, et al. Organization and expression of two Arabidopsis DREB 2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression[J]. Plant Molecular Biology, 2000, 42(4): 657-665.DOI:10.1023/a:1006321900483. [28] Narusaka Y, Nakashima K, Shinwari Z K, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd 29 A gene in response to dehydration and high-salinity stresses[J]. The Plant Journal, 2003, 34(2): 137-148.DOI:10.1046/j.1365-313X.2003.01708.x. [29] Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11632-11637.DOI:10.1073/pnas.190309197. [30] Choi H I, Hong J H, Ha J O, et al. ABFs, a family of ABA-responsive element binding factors[J]. Journal of Biological Chemistry, 2000, 275(3): 1723-1730.DOI:10.1074/jbc.275.3.1723. [31] Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression[J]. The Plant Cell, 1997, 9(10): 1859-1868.DOI:10.1105/tpc.9.10.1859. [32] Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis[J]. Molecular and General Genetics, 1995, 247(4): 391-398.DOI:10.1007/BF00293139. [33] Urao T, Yamaguchi-Shinozaki K, Urao S, et al. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence[J]. The Plant Cell, 1993, 5(11): 1529-1539.DOI:10.1105/tpc.5.11.1529. [34] Wang H M, Zhou L, Fu Y P, et al. Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress[J]. Plant, Cell & Environment, 2012, 35(11): 1932-1947.DOI:10.1111/j.1365-3040.2012.02526.x. [35] Hanana M, Deluc L, Fouquet R, et al. Identification et caractérisation d’un gène de réponse à la déshydratation rd 22 chez la vigne (Vitis vinifera L.)[J]. Comptes Rendus Biologies, 2008, 331: 569-578.DOI:10.1016/j.crvi.2008.05.002. [36] Matus J T, Aquea F, Espinoza C, et al. Inspection of the grapevine BURP superfamily highlights an expansion of RD 22 genes with distinctive expression features in berry development and ABA-mediated stress responses[J]. PLoS One, 2014, 9(10):e110372.DOI:10.1371/journal.pone.0110372. [37] Aubert Y, Leba L J, Cheval C, et al. Involvement of RD 20 , a member of caleosin family, in ABA-mediated regulation of germination in Arabidopsis thaliana [J]. Plant Signaling & Behavior, 2011, 6(4): 538-540.DOI:10.4161/psb.6.4.14836. [38] Daniels M J, Mirkov T E, Chrispeels M J. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP[J]. Plant Physiology, 1994, 106(4): 1325-1333.DOI:10.1104/pp.106.4.1325. [39] Chaumont F, Loomis W F, Chrispeels M J. Expression of an Arabidopsis plasma membrane aquaporin in Dictyostelium results in hypoosmotic sensitivity and developmental abnormalities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(12): 6202-6209.DOI:10.1073/pnas.94.12.6202. [40] Huang R F, Zhu M J, Kang Y, et al. Identification of plasma membrane aquaporin in guard cells of Vicia faba and its role in stomatal movement[J]. Acta Botanica Sinica, 2002, 44(1): 42-48. [41] Hanano A, Bessoule J J, Heitz T, et al. Involvement of the caleosin/peroxygenase RD 20 in the control of cell death during Arabidopsis responses to pathogens[J]. Plant Signaling & Behavior, 2015, 10(4):e991574.DOI:10.4161/15592324.2014.991574. [42] Bernoux M, Timmers T, Jauneau A, et al. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the ralstonia solanacearum PopP2 effector[J]. The Plant Cell, 2008, 20(8): 2252-2264.DOI:10.1105/tpc.108.058685. [43] Lampl N, Alkan N, Davydov O, et al. Set-point control of RD21 protease activity by AtSerpin 1 controls cell death in Arabidopsis [J]. The Plant Journal, 2013, 74(3): 498-510.DOI:10.1111/tpj.12141. [44] Lampl N, Budai-Hadrian O, Davydov O, et al. Arabidopsis AtSerpin 1 , crystal structure and in Vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD 21 )[J]. Journal of Biological Chemistry, 2010, 285(18): 13550-13560.DOI:10.1074/jbc.M109.095075. [45] Shindo T, Misas-Villamil J C, Hörger A C, et al. A role in immunity for Arabidopsis cysteine protease RD 21 , the ortholog of the tomato immune protease C14[J]. PLoS One, 2012, 7(1):e29317.DOI:10.1371/journal.pone.0029317. [46] Ormancey M, Thuleau P, van der Hoorn R A L, et al. Sphingolipid-induced cell death in Arabidopsis is negatively regulated by the papain-like cysteine protease RD 21 [J]. Plant Science, 2019, 280: 12-17.DOI:10.1016/j.plantsci.2018.10.028. [47] Kamranfar I, Xue G P, Tohge T, et al. Transcription factor RD 26 is a key regulator of metabolic reprogramming during dark-induced senescence[J]. New Phytologist, 2018, 218(4): 1543-1557.DOI:10.1111/nph.15127. [48] Jia H Y, Zhang S J, Ruan M Y, et al. Analysis and application of RD 29 genes in abiotic stress response[J]. Acta Physiologiae Plantarum, 2012, 34(4): 1239-1250.DOI:10.1007/s11738-012-0969-z. [49] Cheong Y H, Sung S J, Kim B G, et al. Constitutive overexpression of the calcium sensor CBL 5 confers osmotic or drought stress tolerance in Arabidopsis[J]. Molecules and Cells, 2010, 29(2): 159-165.DOI:10.1007/s10059-010-0025-z. [50] Li F, Han Y Y, Feng Y N, et al. Expression of wheat expansin driven by the RD 29 promoter in tobacco confers water-stress tolerance without impacting growth and development[J]. Journal of Biotechnology, 2013, 163(3): 281-291.DOI:10.1016/j.jbiotec.2012.11.008. [51] 柳娜, 杨文雄, 王世红, 等. 拟南芥rd 29 A启动子在不同胁迫下GUS活性分析[J].甘肃农业科技, 2019(5): 44-50.DOI:10.3969/j.issn.1001-1463.2019.05.010. |