[1] 江梅, 邹兰, 李晓倩, 等. 我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015, 36(9): 3522-3532.DOI:10.13227/j.hjkx.2015.09.051 [2] Cooper O R, Parrish D D, Stohl A, et al. Increasing springtime ozone mixing ratios in the free troposphere over western North America[J]. Nature, 2010, 463(7279): 344-348.DOI:10.1038/nature08708. [3] He Z R, Wang X M, Ling Z H, et al. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications[J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8801-8816.DOI:10.5194/acp-19-8801-2019. [4] 罗达通, 高健, 王淑兰, 等. 北京秋季大气挥发性有机物及相关污染物特征分析[J]. 中国科学院大学学报, 2014, 31(3): 329-336.DOI:10.7523/j.issn.2095-6134.2014.03.006. [5] Sommariva R, de Gouw J A, Trainer M, et al. Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States[J]. Atmospheric Chemistry and Physics, 2011, 11(14): 7081-7096.DOI:10.5194/acp-11-7081-2011. [6] 桑博, 魏凤霞. 济南市区大气中VOCs的浓度、来源及健康风险评价[J]. 中国科学院大学学报, 2019, 36(2): 169-177.DOI:10.7523/j.issn.2095-6134.2019.02.004. [7] Song S K, Shon Z H, Kang Y H, et al. Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul[J]. Environmental Pollution, 2019, 247: 763-774.DOI:10.1016/j.envpol.2019.01.102. [8] Newman P A, Oman L D, Douglass A R, et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?[J]. Atmospheric Chemistry and Physics, 2009, 9(6): 2113-2128.DOI:10.5194/acp-9-2113-2009. [9] 高文康, 唐贵谦, 辛金元, 等. 京津冀地区严重光化学污染时段O3的时空分布特征[J]. 环境科学研究, 2016, 29(5): 654-663.DOI:10.13998/j.issn.1001-6929.2016.05.06. [10] Wang G, Cheng S Y, Wei W, et al. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China[J]. Atmospheric Pollution Research, 2016, 7(4): 711-724.DOI:10.1016/j.apr.2016.03.006. [11] Liu Y F, Song M D, Liu X G, et al. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China[J]. Environmental Pollution, 2020, 257: 113599.DOI:10.1016/j.envpol.2019.113599. [12] Li Q Q, Su G J, Li C Q, et al. An investigation into the role of VOCs in SOA and ozone production in Beijing, China[J]. Science of the Total Environment, 2020, 720: 137536.DOI:10.1016/j.scitotenv.2020.137536. [13] Wang M, Shao M, Chen W, et al. Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002—2013[J]. Atmospheric Chemistry and Physics, 2015, 15(3): 1489-1502.DOI:10.5194/acp-15-1489-2015. [14] Li B W, Ho S S H, Gong S, et al. Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods[J]. Atmospheric Chemistry and Physics, 2019, 19(1): 617-638.DOI:10.5194/acp-19-617-2019. [15] 胡君, 王淑兰, 吴亚君, 等. 北京怀柔O3污染过程初始VOCs浓度特征及来源分析[J]. 环境科学研究, 2019, 32(5): 766-775.DOI:10.13198/j.issn.1001-6929.2019.03.20. [16] Shao M, Wang B, Lu S H, et al. Effects of Beijing olympics control measures on reducing reactive hydrocarbon species[J]. Environmental Science & Technology, 2011, 45(2): 514-519.DOI:10.1021/es102357t. [17] Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12): 4605-4638.DOI:10.1021/cr0206420. [18] Ait-Helal W, Borbon A, Sauvage S, et al. Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation[J]. Atmospheric Chemistry and Physics, 2014, 14(19): 10439-10464.DOI:10.5194/acp-14-10439-2014. [19] Han D M, Gao S, Fu Q Y, et al. Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5?[J]. Atmospheric Research, 2018, 209: 123-130.DOI:10.1016/j.atmosres.2018.04.002. [20] Sun J, Wu F K, Hu B, et al. VOC characteristics, emissions and contributions to SOA formation during hazy episodes[J]. Atmospheric Environment, 2016, 141: 560-570.DOI:10.1016/j.atmosenv.2016.06.060. [21] Stroud C A, Roberts J M, Goldan P D, et al. Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 Southern Oxidants Study[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D8): 8035-8046.DOI:10.1029/2000jd900628. [22] Xie X, Shao M, Liu Y, et al. Estimate of initial isoprene contribution to ozone formation potential in Beijing, China[J]. Atmospheric Environment, 2008, 42(24): 6000-6010.DOI:10.1016/j.atmosenv.2008.03.035. [23] Liang X M, Sun X B, Xu J T, et al. Improved emissions inventory and VOCs speciation for industrial OFP estimation in China[J]. Science of the Total Environment, 2020, 745: 140838.DOI:10.1016/j.scitotenv.2020.140838. [24] Johnson D, Utembe S R, Jenkin M E. Simulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the TORCH 2003 campaign in the southern UK[J]. Atmospheric Chemistry and Physics, 2006, 6(2): 419-431.DOI:10.5194/acp-6-419-2006. [25] Derwent R G, Jenkin M E, Utembe S R, et al. Secondary organic aerosol formation from a large number of reactive man-made organic compounds[J]. Science of the Total Environment, 2010, 408(16): 3374-3381.DOI:10.1016/j.scitotenv.2010.04.013. [26] Norris G, Duvall R, Brown S, et al. EPA positive matrix factorization(PMF) 5.0 fundamentals and user guide[R]. US Environmental Protection Agency EPA/600/R-14/108, 2014. [27] Guo H, Cheng H R, Ling Z H, et al. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta?[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 116-124.DOI:10.1016/j.jhazmat.2011.01.081. [28] Paatero P, Hopke P K. Discarding or downweighting high-noise variables in factor analytic models[J]. Analytica Chimica Acta, 2003, 490(1/2): 277-289.DOI:10.1016/S0003-2670(02)01643-4. [29] Draxler R R, Hess G D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion and deposition[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308. [30] Ashbaugh L L, Malm W C, Sadeh W Z. A residence time probability analysis of sulfur concentrations at grand Canyon National Park[J]. Atmospheric Environment(1967), 1985, 19(8): 1263-1270.DOI:10.1016/0004-6981(85)90256-2. [31] Polissar A V, Hopke P K, Paatero P, et al. The aerosol at Barrow, Alaska: long-term trends and source locations[J]. Atmospheric Environment, 1999, 33(16): 2441-2458.DOI:10.1016/S1352-2310(98)00423-3. [32] Hsu Y K, Holsen T M, Hopke P K. Comparison of hybrid receptor models to locate PCB sources in Chicago[J]. Atmospheric Environment, 2003, 37(4): 545-562.DOI:10.1016/S1352-2310(02)00886-5. [33] Han Y J, Holsen T M, Hopke P K, et al. Comparison between back-trajectory based modeling and Lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury[J]. Environmental Science & Technology, 2005, 39(6): 1715-1723.DOI:10.1021/es0498540. [34] Hui L R, Liu X G, Tan Q W, et al. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China[J]. Atmospheric Environment, 2020, 224: 117340.DOI:10.1016/j.atmosenv.2020.117340. [35] Liu B S, Liang D N, Yang J M, et al. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China[J]. Environmental Pollution, 2016, 218: 757-769.DOI:10.1016/j.envpol.2016.07.072. [36] Wu F K, Yu Y, Sun J, et al. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China[J]. Science of the Total Environment, 2016, 548/549: 347-359.DOI:10.1016/j.scitotenv.2015.11.069. [37] de Gouw J A, Warneke C, Parrish D D, et al. Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11): 4329.DOI:10.1029/2002jd002897. [38] Hecobian A, Liu Z, Hennigan C J, et al. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign[J]. Atmospheric Chemistry and Physics, 2011, 11(24): 13325-13337.DOI:10.5194/acp-11-13325-2011. [39] Levine J S. Experimental evaluation of biomass burning emissions: nitrogen and carbon containing compounds[M]//Global biomass burning: atmospheric, climatic, and biospheric implications. Cambridge, Mass.: MIT Press, 1991: 289-304. [40] Ling Z H, Guo H, Cheng H R, et al. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China[J]. Environmental Pollution, 2011, 159(10): 2310-2319.DOI:10.1016/j.envpol.2011.05.001. [41] 高璟赟, 肖致美, 徐虹, 等. 2019年天津市挥发性有机物污染特征及来源[J]. 环境科学, 2021, 42(1): 55-64.DOI:10.13227/j.hjkx.202006257. [42] 刘佳, 翟崇治, 余家燕, 等. 重庆市环境空气中VOCs的空间分布及来源解析[J]. 环境科学与技术, 2018, 41(2): 71-76.DOI:10.19672/j.cnki.1003-6504.2018.02.011. [43] Zhang F, Shang X N, Chen H, et al. Significant impact of coal combustion on VOCs emissions in winter in a North China rural site[J]. Science of the Total Environment, 2020, 720: 137617.DOI:10.1016/j.scitotenv.2020.137617. [44] Jobson B T, Berkowitz C M, Kuster W C, et al. Hydrocarbon source signatures in Houston, Texas: influence of the petrochemical industry[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D24): D24305.DOI:10.1029/2004jd004887. [45] Xiong Y, Bari M A, Xing Z Y, et al. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: spatiotemporal variation, source apportionment, and health risk assessment[J]. Science of the Total Environment, 2020, 706: 135970.DOI:10.1016/j.scitotenv.2019.135970. [46] Bari M A, Kindzierski W B, Wheeler A J, et al. Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada[J]. Building and Environment, 2015, 90: 114-124.DOI:10.1016/j.buildenv.2015.03.023. [47] Perry R, Gee I L. Vehicle emissions in relation to fuel composition[J]. Science of the Total Environment, 1995, 169(1/2/3): 149-156.DOI:10.1016/0048-9697(95)04643-F. [48] Barletta B, Meinardi S, Sherwood Rowland F, et al. Volatile organic compounds in 43 Chinese cities[J]. Atmospheric Environment, 2005, 39(32): 5979-5990.DOI:10.1016/j.atmosenv.2005.06.029. [49] Tsai W Y, Chan L Y, Blake D R, et al. Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai[J]. Atmospheric Chemistry and Physics, 2006, 6: 3281-3288.DOI:10.5194/acp-6-3281-2006. [50] Legreid G, Reimann S, Steinbacher M, et al. Measurements of OVOCs and NMHCs in a Swiss highway tunnel for estimation of road transport emissions[J]. Environmental Science & Technology, 2007, 41(20): 7060-7066.DOI:10.1021/es062309+. [51] Zhang Y L, Wang X M, Zhang Z, et al. Sources of C2-C4 alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region[J]. Science of the Total Environment, 2015, 502: 236-245.DOI:10.1016/j.scitotenv.2014.09.024. [52] Starn T K, Shepson P B, Bertman S B, et al. Nighttime isoprene chemistry at an urban-impacted forest site[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D17): 22437-22447.DOI:10.1029/98jd01201. [53] Ling Z H, Guo H. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong[J]. Environmental Science & Policy, 2014, 38: 180-191.DOI:10.1016/j.envsci.2013.12.004. |