[1] O'neill B C, Oppenheimer M, Warren R, et al. IPCC reasons for concern regarding climate change risks[J]. Nature Climate Change, 2017, 7(1):28-37. DOI:10.1038/nclimate3179. [2] United Nations Office for Disaster Risk Reduction. The human cost of disasters:an overview of the last 20 years (2000-2019)[R/OL]. Estados Unidos:Naciones Unidas. (2020-10-12)[2021-07-08]. https://reliefweb.int/report/world/human-cost-disasters-overview-last-20-years-2000-2019. [3] Krnhuber K, Osprey S, Coumou D, et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern[J]. Environmental Research Letters, 2019, 14(5):1-7. DOI:10.1088/1748-9326/ab13bf. [4] 仇逸. 上海今年夏天已有10余人非职业性中暑死亡[EB/OL]. 搜狐新闻, (2013-07-30)[2021-07-08]. http://news.sohu.com/20130730/n382965724.shtml. [5] 人民日报. 京广线列车脱轨原因公布[EB/OL]. (2020-04-30)[2021-07-08]. https://baijiahao.baidu.com/s?id=1665404798084280501&wfr=spider&for=pc. [6] 张小玲, 唐宜西, 熊亚军, 等. 华北平原一次严重区域雾霾天气分析与数值预报试验[J]. 中国科学院大学学报, 2014, 31(3):337-344. DOI:10.7523/j.issn.2095-6134.2014.03.007. [7] 宁文晓, 刘旭阳, 王振亭. 巴丹吉林沙漠气温和降水特征及空间分层异质性[J]. 中国科学院大学学报, 2021, 38(1):103-113. DOI:10.7523/j.issn.2095-6134.2021. 01.013. [8] Dong L J, Tang Z, Li X B, et al. Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform[J]. Journal of Central South University, 2020, 27(10):3078-3089. DOI:10.1007/s11771-020-4530-8. [9] 赵瑞星, 翟宇梅. 极端降水广义帕累托分布参数的Pickands自助矩估计研究[J]. 水力发电学报, 2015, 34(10):42-50. DOI:10.11660/slfdxb.20151006. [10] Gao L, Huang J, Chen X W, et al. Contributions of natural climate changes and human activities to the trend of extreme precipitation[J]. Atmospheric Research, 2018, 205:60-69. DOI:10.1016/j.atmosres.2018.02.006. [11] 周小康, 李靖, 赵昕奕. 基于小时温度数据的北京市热岛时空变化与土地利用分析[J]. 北京大学学报(自然科学版), 2020, 56(5):939-949. DOI:10.13209/j.0479-8023.2020.068. [12] 黄建风, 陆文聪. 基于小波-NAR神经网络的气象要素时间序列预测与天气指数彩虹期权估值[J]. 系统工程理论与实践, 2016, 36(5):1146-1155. DOI:10.12011/1000-6788(2016)05-1146-10. [13] Niu W J, Feng Z K, Feng B F, et al. Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir[J]. Water, 2019, 11(1):88-104. DOI:10.3390/w11010088. [14] Sulaiman J, Wahab S H. Heavy rainfall forecasting model using artificial neural network for flood prone area[M]//IT convergence and security 2017. Springer, Singapore, 2018:68-76. DOI:10.1007/978-981-10-6451-7_9. [15] Scher S. Toward data-driven weather and climate forecasting:approximating a simple general circulation model with deep learning[J]. Geophysical Research Letters, 2018, 45(22):12616-12622. DOI:10.1029/2018GL080704. [16] Abduliah N H, Adnan R, Samad A M, et al. Lightning forecasting modelling using artificial neural network (ANN):case study Sultan Abdul Aziz Shah Airport or Skypark Subang[C]//2018 IEEE Conference on Systems, Process and Control (ICSPC). December 14-15, 2018, Melaka, Malaysia. IEEE, 2018:1-4. DOI:10.1109/SPC.2018. 8704147. [17] Gessang O M, Lasminto U. The flood prediction model using artificial neural network (ANN) and weather application programming interface (API) as an alternative effort to flood mitigation in the Jenelata Sub-watershed[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing, 2020, 930(1):012080. DOI:10.1088/1748-9326/ab13bf. [18] 任芝花, 邹凤玲, 余予, 等. 中国地面国际交换站气候资料日值数据集(V3.0)[EB/OL]. 国家气象科学数据中心. (2021-02-01)[2021-07-08]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_CES_V3.0.html. [19] Liu Z, Yang M, Wan G, et al. The spatial and temporal variation of temperature in the Qinghai-Xizang (Tibetan) Plateau during 1971-2015[J]. Atmosphere, 2017, 8(11):214-228. DOI:10.3390/atmos8110214. [20] 《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[M]. 北京:科学出版社, 2015. [21] 孙军, 张福青. 中国日极端降水和趋势[J]. 中国科学:地球科学, 2017, 47(12):1469-1482. DOI:10.1360/N072016-00360. [22] Chen Y C. A tutorial on kernel density estimation and recent advances[J]. Biostatistics & Epidemiology, 2017, 1(1):161-187. DOI:10.1080/24709360.2017.1396742. [23] Vincent P, Bengio Y. Manifold parzen windows[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems (NIPS'02):Cambridge, MA, USA:MIT Press, 2002:849-856. DOI:10.5555/2968618.2968724. [24] Sheather S J, Jones M C. A reliable data-based bandwidth selection method for kernel density estimation[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1991, 53(3):683-690. DOI:10.1111/j.2517-6161.1991.tb01857.x. [25] 陈海山, 范苏丹, 张新华. 中国近50a极端降水事件变化特征的季节性差异[J]. 大气科学学报, 2009, 32(6):744-751. [26] Yosedzadeh S, Ghazavi R, Dokhani S. Study the effect of meteorological droughts on the quantity and continuity of the surface runoff in an arid region (a case study:Kerman Province)[J]. Journal of Arid Regions Geographics Studies, 2019, 9(35):29-43. [27] Khan F, Saeed A, ALI S. Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using vector autoregressive model in Pakistan[J]. Chaos, Solitons & Fractals, 2020, 140:110189. DOI:10.1016/j.chaos.2020.110189. [28] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. DOI:10.1162/neco.1997.9.8.1735. [29] Zhao Z, Chen W H, Wu X M, et al. LSTM network:a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2):68-75. DOI:10.1049/iet-its.2016.0208. [30] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. arXiv:1412.3555. (2014-12-11)[2021-07-08]. https://arxiv.org/abs/1412.3555. [31] Dai Z F, Zhu H, Wen F H. Two nonparametric approaches to mean absolute deviation portfolio selection model[J]. Journal of Industrial & Management Optimization, 2020, 16(5):2283-2303. DOI:10.3934/jimo.2019054. [32] Ali M M, Hashim N, Hamid A S A. Combination of laser-light backscattering imaging and computer vision for rapid determination of oil palm fresh fruit bunches maturity[J]. Computers and Electronics in Agriculture, 2020, 169:105235. DOI:10.1016/j.compag.2020.105235. [33] 高丽, 陈静, 郑嘉雯, 等. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7):706-716. DOI:10.11867/j.issn.1001-8166.2019.07.0706. [34] Yu J H, Liu Y M, Ma T T, et al. Impact of surface potential vorticity density forcing over the Tibetan Plateau on the South China extreme precipitation in January 2008. part Ⅱ:numerical simulation[J]. Journal of Meteorological Research, 2019, 33(3):416-432. DOI:10.1007/s13351-019-8606-z. [35] Jia Z, Ren F M, Zhang D L, et al. An application of the LTP_DSEF model to heavy precipitation forecasts of landfalling tropical cyclones over China in 2018[J]. Science China Earth Sciences, 2020, 63(1):27-36. DOI:10.1007/s11430-019-9390-6. |