[1] 罗开盛, 陶福禄. 黑河流域1995-2014年县域水资源压力评价[J]. 中国科学院大学学报, 2018, 35(2):172-179. [2] 吕乐婷, 彭秋志, 郭媛媛, 等. 基于SWAT模型的东江流域径流模拟[J]. 自然资源学报, 2014, 29(10):1746-1757. [3] 张蕾, 卢文喜, 安永磊, 等. SWAT模型在国内外非点源污染研究中的应用进展[J]. 生态环境学报, 2009, 18(6):2387-2392. [4] 郭军庭, 张志强, 王盛萍, 等. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响[J]. 生态学报, 2014, 34(6):1559-1567. [5] Khelifa W B, Hermassi T, Strohmeier S, et al. Parameterization of the effect of bench terraces on runoff and sediment yield by SWAT modeling in a small semi-arid watershed in Northern Tunisia[J]. Land Degradation & Development, 2017, 28(5):1568-1578. [6] 周建中, 卢韦伟, 孙娜, 等. 水文模型参数多目标率定及最优非劣解优选[J]. 水文, 2017, 37(2):1-7. [7] Abbaspour K C, Yang J, Maximov I, et al. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT[J]. Journal of Hydrology, 2007, 333(2-4):413-430. [8] Park G A, Park J Y, Joh H K, et al. Evaluation of mixed forest evapotranspiration and soil moisture using measured and swat simulated results in a hillslope watershed[J]. KSCE Journal of Civil Engineering, 2014, 18(1):315-322. [9] Beven K. Prophecy, reality and uncertainty in distributed hydrological modelling[J]. Advances in Water Resources, 1993, 16(1):41-51. [10] 杨凯杰, 吕昌河. SWAT模型应用与不确定性综述[J]. 水土保持学报, 2018, 32(1):17-24,31. [11] Bai J W, Shen Z Y, Yan T Z. A comparison of single-and multi-site calibration and validation:a case study of SWAT in the Miyun Reservoir watershed, China[J]. Frontiers of Earth Science, 2017, 11(3):592-600. [12] Nkiaka E, Nawaz N R, Lovett J C. Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty:a case study in the Logone catchment, Lake Chad basin[J]. Stochastic Environmental Research and Risk Assessment, 2018, 32(6):1665-1682. [13] Shrestha M K, Recknagel F, Frizenschaf J, et al. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia[J]. Agricultural Water Management, 2016, 175:61-71. [14] Odusanya A E, Mehdi B, Schürz C, et al. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria[J]. Hydrology and Earth System Sciences, 2019, 23(2):1113-1144. [15] Gong Y W, Shen Z Y, Liu R W, et al. A comparison of single and multi-gauge based calibrations for hydrological modeling of the Upper Daning River Watershed in China's Three Gorges Reservoir Region[J]. Hydrology Research, 2012, 43(6):822-832. [16] Molina-Navarro E, Andersen H E, Nielsen A, et al. The impact of the objective function in multi-site and multi-variable calibration of the SWAT model[J]. Environmental Modelling & Software, 2017, 93:255-267. [17] Wanders N, Bierkens M F P, de Jong S M, et al. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models[J]. Water Resources Research, 2014, 50(8):6874-6891. [18] Zhang J, Li Q N, Guo B B, et al. The comparative study of multi-site uncertainty evaluation method based on SWAT model[J]. Hydrological Processes, 2015, 29(13):2994-3009. [19] 芮孝芳.论流域水文模型[J]. 水利水电科技进展, 2017, 37(4):1-7,58. [20] Li Y, Grimaldi S, Pauwels V R N, et al. Hydrologic model calibration using remotely sensed soil moisture and discharge measurements:The impact on predictions at gauged and ungauged locations[J]. Journal of Hydrology, 2018, 557:897-909. [21] Tuo Y, Marcolini G, Disse M, et al. A multi-objective approach to improve SWAT model calibration in alpine catchments[J]. Journal of Hydrology, 2018, 559:347-360. [22] 何柯琪, 高超, 谢京凯, 等. 基于径流和积雪资料的水文模型多目标率定[J]. 水力发电学报, 2019, 38(3):65-74. [23] Kunnath-Poovakka A, Ryu D, Renzullo L J, et al. The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction[J]. Journal of Hydrology, 2016, 535:509-524. [24] 杨大文, 雷慧闽, 丛振涛. 流域水文过程与植被相互作用研究现状评述[J]. 水利学报, 2010, 41(10):1142-1149. [25] 陈喜,宋琪峰,高满, 等.植被-土壤-水文相互作用及生态水文模型参数的动态表述[J]. 北京师范大学学报(自然科学版), 2016, 52(3):362-368. [26] 赖格英, 仇霖, 张智勇, 等. 基于多植物生长模式的SWAT模型的修正与有效性初探[J]. 湖泊科学, 2018, 30(2):472-487. [27] Zhou X V, Clark C D, Nair S S, et al. Environmental and economic analysis of using SWAT to simulate the effects of switchgrass production on water quality in an impaired watershed[J]. Agricultural Water Management, 2015, 160:1-13. [28] Abbaspour K C, Vejdani M, Haghighat S, et al. SWAT-CUP calibration and uncertainty programs for SWAT[C]//MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand. 2007:1596-1602. [29] Abbaspour K C, Rouholahnejad E, Vaghefi S, et al. A continental-scale hydrology and water quality model for Europe:calibration and uncertainty of a high-resolution large-scale SWAT model[J]. Journal of Hydrology, 2015, 524:733-752. [30] Rajib M A, Merwade V, Yu Z Q. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture[J]. Journal of Hydrology, 2016, 536:192-207. [31] Emelyanova I V, McVicar T R, van Niel T G, et al. Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics:a framework for algorithm selection[J]. Remote Sensing of Environment, 2013, 133:193-209. [32] Ma T, Duan Z, Li R, et al. Enhancing SWAT with remotely sensed LAI for improved modelling of ecohydrological process in subtropics[J]. Journal of Hydrology, 2019, 570:802-815. [33] Cai X L, Sharma B R. Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin[J]. Agricultural Water Management, 2010, 97(2):309-316. [34] 杨建莹, 霍治国, 邬定荣, 等. 基于MODIS和SEBAL模型的黄淮海平原冬小麦水分生产力研究[J]. 中国农业气象, 2017, 38(7):435-446. [35] Duan Z, Bastiaanssen W G M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure[J]. Remote Sensing of Environment, 2013, 131:1-13. [36] 左德鹏, 徐宗学. 基于SWAT模型和SUFI-2算法的渭河流域月径流分布式模拟[J]. 北京师范大学学报(自然科学版), 2012, 48(5):490-496. [37] Qiu L J, Zheng F L, Yin R S. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China:capabilities and challenges[J]. International Journal of Sediment Research, 2012, 27(2):226-234. [38] Zhang X S, Srinivasan R, Bosch D. Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging[J]. Journal of Hydrology, 2009, 374(3/4):307-317. [39] Narsimlu B, Gosain A K, Chahar B R, et al. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River basin, India, using sequential uncertainty fitting[J]. Environmental Processes, 2015, 2(1):79-95. [40] 梁珂, 阚光远, 李致家. 新型耦合数据驱动模型在降雨径流模拟中的应用研究[J]. 水文, 2016, 36(4):1-7. [41] Bosznay M. Generalization of SCS curve number method[J]. Journal of Irrigation and Drainage Engineering, 1989, 115(1):139-144. [42] 林炳青, 陈莹, 陈兴伟.SWAT模型水文过程参数区域差异研究[J]. 自然资源学报, 2013, 28(11):1988-1999. |