[1] Okamoto T J, Sakurai T. Super-strong magnetic field in sunspots[J]. The Astrophysical Journal Letters, 2018, 852(1):L16. DOI:10.3847/2041-8213/aaa3d8. [2] Schwabe H. Sonnenbeobachtungen im Jahre 1838[J]. Astronomische Nachrichten, 1839, 16(12/13):185-186. DOI:10.1002/asna.18390161205. [3] 唐洁, 刘晓琴. 太阳黑子相对数的多时间尺度及混沌特性分析[J]. 中国科学:物理学力学天文学, 2018, 48(2):103-110. DOI:10.1360/SSPMA2017-00260. [4] 田中大, 李树江, 王艳红, 等. 太阳黑子数平滑月均值的混合预测模型[J]. 中国科学:物理学力学天文学, 2016, 46(11):105-114. DOI:10.1360/SSPMA2016-00191. [5] Dani T, Sulistiani S. Prediction of maximum amplitude of solar cycle 25 using machine learning[J]. Journal of Physics:Conference Series, 2019, 1231(1):012022. DOI:10.1088/1742-6596/1231/1/012022. [6] Zhao H J, Wang J L, Zong W G, et al. Prediction of the smoothed monthly mean sunspot numbers by means of RBF (radial basic function) neural networks[J]. Chinese Journal of Geophysics, 2008, 51(1):20-24. DOI:10.1002/cjg2.1190. [7] Ding L G, Jiang Y, Lan R S. Prediction of the smoothed monthly mean sunspot area using artificial neural metwork[C]//2012 Fifth International Conference on Information and Computing Science. July 24-25, 2012, Liverpool, UK. IEEE, 2012:33-36. DOI:10.1109/ICIC.2012.42. [8] Pala Z, Atici R. Forecasting sunspot time series using deep learning methods[J]. Solar Physics, 2019, 294(5):1-14. DOI:10.1007/s11207-019-1434-6. [9] Benson B, Pan W D, Prasad A, et al. Forecasting solar cycle 25 using deep neural networks[J]. Solar Physics, 2020, 295(5):1-15. DOI:10.1007/s11207-020-01634-y. [10] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. DOI:10.1162/neco.1997.9.8.1735. [11] Achkar R, Elias-Sleiman F, Ezzidine H, et al. Comparison of BPA-MLP and LSTM-RNN for stocks prediction[C]//20186th International Symposium on Computational and Business Intelligence (ISCBI). August 27-29, 2018, Basel, Switzerland. IEEE, 2018:48-51. DOI:10.1109/ISCBI.2018.00019. [12] Tong W T, Li L X, Zhou X L, et al. Deep learning PM2.5 concentrations with bidirectional LSTM RNN[J]. Air Quality, Atmosphere & Health, 2019, 12(4):411-423. DOI:10.1007/s11869-018-0647-4. [13] Sun L, Du J, Dai L R, et al. Multiple-target deep learning for LSTM-RNN based speech enhancement[C]//2017 Hands-free Speech Communications and Microphone Arrays (HSCMA). March 1-3, 2017, San Francisco, CA, USA. IEEE, 2017:136-140. DOI:10.1109/HSCMA.2017.7895577. [14] Siami-Namini S, Tavakoli N, Siami Namin A. A comparison of ARIMA and LSTM in forecasting time series[C]//201817th IEEE International Conference on Machine Learning and Applications (ICMLA). December 17-20, 2018, Orlando, FL, USA. IEEE, 2018:1394-1401. DOI:10.1109/ICMLA.2018.00227. [15] Cheng S, Qiao X J, Shi Y L, et al. Machine learning for predicting discharge fluctuation of a karst spring in North China[J]. Acta Geophysica, 2021, 69(1):257-270. DOI:10.1007/s11600-020-00522-0. [16] Fukuoka R, Suzuki H, Kitajima T, et al. Wind speed prediction model using LSTM and 1D-CNN[J]. Journal of Signal Processing, 2018, 22(4):207-210. DOI:10.2299/jsp.22.207. [17] Panigrahi S, Pattanayak R M, Sethy P K, et al. Forecasting of sunspot time series using a hybridization of ARIMA, ETS and SVM methods[J]. Solar Physics, 2021, 296(1):1-19. DOI:10.1007/s11207-020-01757-2. [18] He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015:1026-1034. DOI:10.1109/ICCV.2015.123. [19] Kingma D P, Ba J. Adam:a method for stochastic optimization[EB/OL]. arXiv:1412.6980. (2014-12-22)[2021-7-24]. https://arxiv.org/abs/1412.6980. [20] Covas E, Peixinho N, Fernandes J. Neural network forecast of the sunspot butterfly diagram[J]. Solar Physics, 2019, 294(3):1-15. DOI:10.1007/s11207-019-1412-z. [21] Li K J, Feng W, Li F Y. Predicting the maximum amplitude of solar cycle 25 and its timing[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 135:72-76. DOI:10.1016/j.jastp.2015.09.010. [22] Okoh D I, Seemala G K, Rabiu A B, et al. A hybrid regression-neural network (HR-NN) method for forecasting the solar activity[J]. Space Weather, 2018, 16(9):1424-1436. DOI:10.1029/2018SW001907. [23] McIntosh S W, Chapman S, Leamon R J, et al. Overlapping magnetic activity cycles and the sunspot number:forecasting sunspot cycle 25 amplitude[J]. Solar Physics, 2020, 295(12):1-14. DOI:10.1007/s11207-020-01723-y. [24] Li Q, Wan M, Zeng S G, et al. Predicting the 25th solar cycle using deep learning methods based on sunspot area data[J]. Research in Astronomy and Astrophysics, 2021, 21(7):184. DOI:10.1088/1674-4527/21/7/184. [25] Gleissberg W. A long-periodic fluctuation of the sun-spot numbers[J]. The Observatory, 1939, 62:158-159. [26] Charbonneau P. Dynamo models of the solar cycle[J]. Living Reviews in Solar Physics, 2010, 7:1-91. DOI:10.1007/s41116-020-00025-6. [27] Solanki S K, Krivova N A. Analyzing solar cycles[J]. Science, 2011, 334(6058):916-917. DOI:10.1126/science.1212555. [28] Mendoza B, Velasco-Herrera V M. On mid-term periodicities in sunspot groups and flare index[J]. Solar Physics, 2011, 271(1):169-182. DOI:10.1007/s11207-011-9802-x. [29] Petrovay K. Solar cycle prediction[J]. Living Reviews in Solar Physics, 2020, 17:1-93. DOI:10.1007/s41116-020-0022-z. [30] Velasco Herrera V M, Mendoza B, Velasco Herrera G V. Reconstruction and prediction of the total solar irradiance:from the Medieval Warm Period to the 21st century[J]. New Astronomy, 2015, 34:221-233. DOI:10.1016/j.newast.2014.07.009. [31] Basu S, Meckesheimer M. Automatic outlier detection for time series:an application to sensor data[J]. Knowledge and Information Systems, 2007, 11(2):137-154. DOI:10.1007/s10115-006-0026-6. [32] Papadimitriou S, Kitagawa H, Gibbons P B, et al. LOCI:fast outlier detection using the local correlation integral[C]//Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405). March 5-8, 2003, Bangalore, India. IEEE, 2003:315-326. DOI:10.1109/ICDE.2003.1260802. |