[1] 杜连凤, 吴琼, 赵同科, 等. 北京市郊典型农田施肥研究与分析[J]. 中国土壤与肥料, 2009(3):75-78. [2] Xie Z J, Li S Y, Tang S C, et al. Phosphorus leaching from soil profiles in agricultural and forest lands measured by a cascade extraction method[J]. Journal of Environmental Quality, 2019, 48(3):568-578. [3] 蔡文静, 常春平, 宋帅, 等. 德州地区地下水中磷的空间分布特征及来源分析[J]. 中国生态农业学报,2013, 21(4):456-464. [4] Warrinnier R, Goossens T, Amery F, et al. Investigation on the control of phosphate leaching by sorption and colloidal transport:column studies and multi-surface complexation modelling[J]. Applied Geochemistry, 2019, 100:371-379. [5] Liu J, Bergkvist G, Ulén B. Biomass production and phosphorus retention by catch crops on clayey soils in southern and central Sweden[J]. Field Crops Research, 2015, 171:130-137. [6] Wang J, Wang D J, Zhang G, et al. Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention[J]. Agricultural Water Management, 2014, 141:66-73. [7] 张伟明. 生物炭的理化性质及其在作物生产上的应用[D]. 沈阳:沈阳农业大学, 2012. [8] Zheng M H, Chen H, Li D J, et al. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees[J]. Biology and Fertility of Soils, 2016, 52(5):665-674. [9] Bashir S, Zhu J, Fu Q L, et al. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments[J]. Chemosphere, 2018, 194:579-587. [10] Blanco-Canqui H. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 2017, 81(4):687-711. [11] Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4):443-449. [12] Sukartono, Utomo W H, Kusuma Z, et al. Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia[J]. Journal of Tropical Agriculture, 2011, 49:47-52. [13] 李际会, 吕国华, 白文波, 等. 改性生物炭的吸附作用及其对土壤硝态氮和有效磷淋失的影响[J]. 中国农业气象, 2012, 33(2):220-225. [14] 卜晓莉, 汪浪浪, 马青林, 等. 稻壳炭施用对太湖滨岸灰潮土氮磷淋失及土壤性质的影响[J]. 生态环境学报, 2019, 28(11):2216-2222. [15] 高德才. 生物黑炭与有机无机肥配施对旱地作物生长及养分淋失的影响[D]. 长沙:湖南农业大学, 2014. [16] Chen Y M, Zhang J Y, Xu X, et al. Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China[J]. Agricultural Water Management, 2018, 210:165-170. [17] Fan Z B, Lin S, Zhang X M, et al. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production[J]. Agricultural Water Management, 2014, 144:11-19. [18] Yang R F, Geng L L, Lu H Q, et al. Ultrasound-synergized electrostatic field extraction of total flavonoids from Hemerocallis citrina baroni[J]. Ultrasonics Sonochemistry, 2017, 34:571-579. [19] Smaje C. The strong perennial vision:A critical review[J]. Agroecology and Sustainable Food Systems, 2015, 39(5):471-499. [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. [21] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:A review[J]. Science of the Total Environment, 2018, 612:522-537. [22] Ali M H, Hoque M R, Hassan A A, et al. Effects of deficit irrigation on yield, water productivity, and economic returns of wheat[J]. Agricultural Water Management, 2007, 92(3):151-161. [23] Patanè C, Tringali S, Sortino O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions[J]. Scientia Horticulturae, 2011, 129(4):590-596. [24] Ndor E, Dauda S, Azagaku E. Response of maize varieties (Zea mays) to biochar amended soil in lafia, Nigeria[J]. American Journal of Experimental Agriculture, 2015, 5(6):525-531. [25] Yu H W, Zou W X, Chen J J, et al. Biochar amendment improves crop production in problem soils:A review[J]. Journal of Environmental Management, 2019, 232:8-21. [26] Pokharel P, Chang S X. Manure pellet, woodchip and their biochars differently affect wheat yield and carbon dioxide emission from bulk and rhizosphere soils[J]. Science of the Total Environment, 2019, 659:463-472. [27] Huang M, Fan L, Jiang L G, et al. Continuous applications of biochar to rice:effects on grain yield and yield attributes[J]. Journal of Integrative Agriculture, 2019, 18(3):563-570. [28] Faloye O T, Alatise M O, Ajayi A E, et al. Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation[J]. Agri-cultural Water Management, 2019, 217:165-178. [29] 黄昌勇, 徐建明. 土壤学[M]. 3版. 北京:中国农业出版社, 2010:140-188. [30] 项大力, 杨学云, 孙本华, 等. 灌溉水平对土磷素淋失的影响[J]. 植物营养与肥料学报, 2010, 16(1):112-117. [31] Li Y, Li J Q, Gao L H, et al. Irrigation has more influence than fertilization on leaching water quality and the potential environmental risk in excessively fertilized vegetable soils[J]. PLoS One, 2018, 13(9):e0204570. [32] Azad N, Behmanesh J, Rezaverdinejad V, et al. Evaluation of fertigation management impacts of surface drip irrigation on reducing nitrate leaching using numerical modeling[J]. Environmental Science and Pollution Research, 2019, 26(36):36499-36514. [33] Panigrahi P, Srivastava A K, Huchche A D. Effects of drip irrigation regimes and basin irrigation on Nagpur mandarin agronomical and physiological performance[J]. Agricultural Water Management, 2012, 104:79-88. [34] Lv H F, Lin S, Wang Y F, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J]. Environmental Pollution, 2019, 245:694-701. [35] Stowe D C, Lamhamedi M S, Carles S, et al. Managing irrigation to reduce nutrient leaching in containerized white spruce seedling production[J]. New Forests, 2010, 40(2):185-204. [36] 郑彩霞, 张富仓, 贾运岗, 等. 不同滴灌量对土壤水氮运移规律研究[J]. 水土保持学报, 2014, 28(6):167-170,176. [37] 王虎, 王旭东. 滴灌施肥条件下土壤水分和速效磷的分布规律[J]. 西北农林科技大学学报(自然科学版), 2007, 35(5):141-146. [38] Liu C X, Rubæk G H, Liu F L, et al. Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato[J]. Agricultural Water Management, 2015, 159:66-76. [39] Jalali M, Jalali M. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus[J]. Chemos-phere, 2017, 171:106-117. [40] Wang Y T, Zhang T Q, O'Halloran I P, et al. Agronomic and environmental soil phosphorus tests for predicting potential phosphorus loss from Ontario soils[J]. Geoderma, 2015, 241/242:51-58. [41] Barrow N J. The effects of pH on phosphate uptake from the soil[J]. Plant and Soil, 2017, 410(1/2):401-410. [42] Barrow N J, Debnath A. Effect of phosphate status and pH on sulphate sorption and desorption[J]. European Journal of Soil Science, 2015, 66(2):286-297. [43] de Campos M, Antonangelo J A, van der Zee S E A T M, et al. Degree of phosphate saturation in highly weathered tropical soils[J]. Agricultural Water Management, 2018, 206:135-146. [44] Fink J R, Inda A V, Bavaresco J, et al. Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy[J]. Soil and Tillage Research, 2016, 155:62-68. [45] Gul S, Whalen J K, Thomas B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils:mechanisms and future directions[J]. Agriculture, Ecosy-stems & Environment, 2015, 206:46-59. |