Continuity of the Lp-norm of the truncated Hardy-Littlewood maximal operator
WU Jia1, WEI Mingquan2, YAN Dunyan1
1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 2. School of Mathematics and statistics, Xinyang Normal University, Xinyang 464000, Henan, China
the National Natural Science Foundation of China (11871452, 12071052), the Natural Science Foundation of Henan (202300410338), and the Nanhu Scholar Program for Young Scholars of XYNU
WU Jia, WEI Mingquan, YAN Dunyan. Continuity of the Lp-norm of the truncated Hardy-Littlewood maximal operator[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(1): 28-34.
[1] Grafakos L. Classical Fourier analysis: volume 249 of Graduate Texts in Mathematics [M]. 3rd ed. York New: Springer,2014.DOI:10.1007/978-1-4939-1194-3. [2] Adams D R, Hedberg L I. Function spaces and potential theory [M]. Berlin,Heidelberg:Springer Berlin Heidelberg,1996.DOI:10.1007/978-3-662-03282-4. [3] Lu S Z,Yan D Y. Lp-boundedness of multilinear oscillatory singular integrals with Calderón- Zygmund kernel [J].Science in China (Mathematics Physics Astronomy),2002,45(2): 196-213.DOI:10.3969/j.issn.1674-7283.2002.02.006. [4] Wei M Q, Nie X D, Wu D, et al. A note on Hardy-Littlewood maximal operators [J]. Journal of Inequalities and Applications, 2016,2016:21. DOI:10.1186/s13660-016-0963-x. [5] Zhang X S, Wei M Q, Yan D Y, et al. Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces[J]. Frontiers of Mathematics in China,2020,15(1): 215-223. DOI:10.1007/s11464-020-0812-6. [6] Wu J, Liu S, Wei M Q, Yan D Y, et al. The sharp constant for truncated Hardy-Littlewood maximal inequality[math.CA].[EB/OL].arXiv:2110.13493.(2021-10-26)[2021-10-28]. https://arxiv.org/abs/2110.13493.