Journal of University of Chinese Academy of Sciences ›› 2023, Vol. 40 ›› Issue (5): 614-636.DOI: 10.7523/j.ucas.2021.0084
• Research Articles • Previous Articles Next Articles
FENG Hongye1, JU Yiwen1, ZHU Hongjian1,2, YU Kun1,3, QIAO Peng1, JU Liting1, XIAO Lei1
Received:
2021-09-27
Revised:
2021-12-28
Online:
2023-09-15
CLC Number:
FENG Hongye, JU Yiwen, ZHU Hongjian, YU Kun, QIAO Peng, JU Liting, XIAO Lei. Tectonic evolution and mineralization of Carlin-type gold deposits in Youjiang basin[J]. Journal of University of Chinese Academy of Sciences, 2023, 40(5): 614-636.
Add to citation manager EndNote|Ris|BibTeX
[1] 琚宜文, 孙盈, 王国昌, 等. 盆地形成与演化的动力学类型及其地球动力学机制[J]. 地质科学, 2015, 50(2):503-523. DOI:10.3969/j.issn.0563-5020.2015.02.010. [2] Ju Y W, Wang G Z, Li S Z, et al. Geodynamic mechanism and classification of basins in the Earth system[J]. Gondwana Research, 2022,102:200-228. DOI:10.1016/j.gr.2020.08.017. [3] 秦建华, 吴应林, 颜仰基, 等. 南盘江盆地海西-印支期沉积构造演化[J/OL]. 地质学报, 1996, 70(2):99-107(1996-05-15)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DZXE199602000&DbName=CJFQ1996. [4] 杜远生, 黄虎, 杨江海, 等. 晚古生代-中三叠世右江盆地的格局和转换[J]. 地质论评, 2013, 59(1):1-11. DOI:10.16509/j.georeview.2013.01.009. [5] 陈沈强, 朱民, 熊光耀, 等. 上扬子西南部晚三叠世古隆起演化及其构造意义[J]. 大地构造与成矿学, 2017, 41(4):653-662. DOI:10.16539/j.ddgzyckx.2017.04.003. [6] 黄虎, 杜远生, 黄志强, 等. 桂西晚古生代硅质岩地球化学特征及其对右江盆地构造演化的启示[J/OL]. 中国科学:地球科学, 2013, 43(2):304-316(2013-02-20)[2021-12-18]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201302015&dbname=CJFD&dbcode=CJFQ. [7] 夏文静, 闫全人, 向忠金, 等. 南盘江盆地八渡辉绿岩斜锆石和锆石U-Pb年龄及其地质意义[J]. 地球学报, 2019, 40(2):265-278. DOI:10.3975/cagsb.2018.070901. [8] 罗孝桓. 黔西南右江区金矿床控矿构造样式及成矿作用分析[J/OL]. 贵州地质, 1997, (4):312-320. (1997-12-30)[2021-12-18]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=GZDZ199704004&dbname=CJFD&dbcode=CJFQ. [9] 刘寅, 胡凯, 韩善楚, 等. 右江盆地构造和演化及对卡林型金矿床的控制作用[J]. 高校地质学报, 2015, 21(1):1-14. DOI:10.16108/j.issn1006-7493.2014161. [10] 杨成富, 刘建中, 顾雪祥, 等. 南盘江-右江盆地构造演化与金锑成矿作用[J]. 地球学报, 2020, 41(2):280-292. DOI:10.3975/cagsb.2020.021501. [11] 朱经经, 钟宏, 谢桂青, 等. 右江盆地酸性脉岩继承锆石成因及地质意义[J/OL]. 岩石学报, 2016, 32(11):3269-3280(2016-12-20)[2021-12-18]. https://d.wanfangdata.com.cn/periodical/ysxb98201611003. [12] Hu R Z, Fu S L, Huang Y, et al. The giant South China Mesozoic low-temperature metallogenic domain:reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 2017, 137:9-34. DOI:10.1016/j.jseaes.2016.10.016. [13] Zhu J J, Hu R Z, Richards J P, et al. No genetic link between Late Cretaceous felsic dikes and Carlin-type Au deposits in the Youjiang basin, Southwest China[J]. Ore Geology Reviews, 2017, 84:328-337. DOI:10.1016/j.oregeorev.2017.01.014. [14] 胡煜昭. 黔西南坳陷沉积盆地分析与锑、金成矿研究[D]. 昆明:昆明理工大学, 2011. [15] 刘建中, 夏勇, 陶琰, 等. 贵州西南部SBT研究[M]. 武汉:中国地质大学出版社, 2017. [16] 高伟. 桂西北卡林型金矿成矿年代学和动力学[D]. 北京:中国科学院大学, 2018. [17] Su W C, Dong W D, Zhang X C, et al. Carlin-type gold deposits in the Dian-Qian-Gui "golden triangle" of southwest China[M]//Diversity in Carlin-Style Gold Deposits. Littleton:Society of Economic Geologists, 2018, 20:157-185. DOI:10.5382/rev.20.05. [18] 黄虎, 杨江海, 杜远生, 等. 右江盆地上二叠统—中三叠统凝灰岩年龄及其地质意义[J]. 地球科学, 2012, 37(1):125-138. DOI:10.3799/dqkx.2012.012. [19] 皮桥辉, 胡瑞忠, 彭科强, 等. 云南富宁者桑金矿床与基性岩年代测定:兼论滇黔桂地区卡林型金矿成矿构造背景[J/OL]. 岩石学报, 2016, 32(11):3331-3342(2016-12-20)[2021-12-18]. https://d.wanfangdata.com.cn/periodical/ysxb98201611008. [20] 陈懋弘, 陆刚, 李新华. 桂西北地区石英斑岩脉白云母40Ar/39Ar年龄及其地质意义[J]. 高校地质学报, 2012, 18(1):106-116. DOI:10.16108/j.issn1006-7493.2012.01.011. [21] 甘成势, 王岳军, 张玉芝, 等. 右江盆地晚侏罗世钾玄质高镁安山岩的厘定及其构造意义[J/OL]. 岩石学报, 2016, 32(11):3281-3294(2016-12-20)[2021-12-18]. https://d.wanfangdata.com.cn/periodical/ysxb98201611004. [22] Liu S, Su W C, Hu R Z, et al. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China[J]. Lithos, 2010, 114(1/2):253-264. DOI:10.1016/j.lithos.2009.08.012. [23] Wang X F, Metcalfe I, Jian P, et al. The Jinshajiang-Ailaoshan suture zone, China:tectonostratigraphy, age and evolution[J]. Journal of Asian Earth Sciences, 2000, 18(6):675-690. DOI:10.1016/S1367-9120(00)00039-0. [24] Jian P, Liu D Y, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(II):insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 2009, 113(3/4):767-784. DOI:10.1016/j.lithos.2009.04.006. [25] 乔龙. 右江盆地及其周缘地区构造演化及铝土矿成矿作用[D]. 北京:中国地质大学(北京), 2016. [26] 朱江, 张招崇, 侯通, 等. 贵州盘县峨眉山玄武岩系顶部凝灰岩LA-ICP-MS锆石U-Pb年龄:对峨眉山大火成岩省与生物大规模灭绝关系的约束[J/OL]. 岩石学报, 2011, 27(9):2743-2751(2011-09-15)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YSXB201109023&DbName=CJFQ2011. [27] Shellnutt J G, Pham T T, Denyszyn S W, et al. Magmatic duration of the Emeishan large igneous province:insight from northern Vietnam[J]. Geology, 2020, 48(5):457-461. DOI:10.1130/g47076.1. [28] Zhong Y T, Mundil R, Chen J, et al. Geochemical, biostratigraphic, and high-resolution geochronological constraints on the waning stage of Emeishan Large Igneous Province[J]. GSA Bulletin, 2020, 132(9/10):1969-1986. DOI:10.1130/b35464.1. [29] Zhu J, Zhang Z C, Reichow M K, et al. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(2):1018-1034. DOI:10.1002/2017JB015058. [30] Shang Z, Chen Y Q. Zircon U-Pb geochronology, ggeochemistry and geological significance of the Anisian alkaline basalts in Gejiu district, Yunnan Province[J]. Minerals, 2020, 10(11):1030. DOI:10.3390/min10111030. [31] Deng J, Wang Q F, Li G J, et al. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 2015, 70:457-485. DOI:10.1016/j.oregeorev.2015.02.015. [32] Wang C M, Bagas L, Lu Y J, et al. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:insights from zircon Hf-isotopic mapping[J]. Earth-Science Reviews, 2016, 156:39-65. DOI:10.1016/j.earscirev.2016.02.008. [33] Liu H C, Wang Y J, Fan W M, et al. Petrogenesis and tectonic implications of Late-Triassic high ε Nd(t)-ε Hf(t) granites in the Ailaoshan tectonic zone (SW China)[J]. Science China Earth Sciences, 2014, 57(9):2181-2194. DOI:10.1007/s11430-014-4854-z. [34] 董树文, 李廷栋, 钟大赉, 等. 侏罗纪/白垩纪之交东亚板块汇聚的研究进展和展望[J]. 中国科学基金, 2009, 23(5):281-286. DOI:10.16262/j.cnki.1000-8217.2009.05.005. [35] 陈懋弘, 章伟, 杨宗喜, 等. 黔西南白层超基性岩墙锆石SHRIMP U-Pb年龄和Hf同位素组成研究[J]. 矿床地质, 2009, 28(3):240-250. DOI:10.3969/j.issn.0258-7106.2009.03.002. [36] 胡瑞忠, 苏文超, 毕献武, 等. 滇黔桂三角区微细浸染型金矿床成矿热液一种可能的演化途径:年代学证据[J]. 矿物学报, 1995, 15(2):144-149. DOI:10.16461/j.cnki.1000-4734.1995.02.005. [37] 刘建中, 邓一明, 刘川勤, 等. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式[J]. 中国地质, 2006, 33(1):169-177. DOI:10.3969/j.issn.1000-3657.2006.01.019. [38] 赵静, 梁金龙, 李军, 等. 贵州贞丰水银洞金矿矿床成因与成矿模式:来自载金黄铁矿NanoSIMS多元素Mapping及原位微区硫同位素的证据[J]. 地学前缘, 2018, 25(1):157-167. DOI:10.13745/j.esf.yx.2018.01.011. [39] Liang J L, Li J, Liu X M, et al. Multiple element mapping and in-situ S isotopes of Au-carrying pyrite of Shuiyindong gold deposit, southwestern China using NanoSIMS:constraints on Au sources, ore fluids, and mineralization processes[J]. Ore Geology Reviews, 2020, 123:103576. DOI:10.1016/j.oregeorev.2020.103576. [40] 杨友, 吴绘. 册亨县丫他金矿外围及深部找矿靶区的圈定[J]. 西部探矿工程, 2016, 28(11):157-161. DOI:10.3969/j.issn.1004-5716.2016.11.052. [41] 曾国平. 黔西南矿集区西段微细浸染型金矿构造控矿作用研究[D]. 武汉:中国地质大学, 2018. [42] 范军. 黔西南戈塘大型金矿床地质地球化学及成因研究[D]. 昆明:昆明理工大学, 2015. [43] 黄建国, 李虎杰, 李文杰, 等. 贵州戈塘金矿萤石微量元素特征及钐-钕测年[J/OL]. 地球科学进展, 2012, 27(10):1087-1093(2012-10-10)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2012&filename=DXJZ201210008&uniplatform=NZKPT&v=pKQRL1ONbziHtwVubFzbKWMX4FOZ8sQoJ-w0DZaJrPA2BQapz8y-TLSA5aWnRJe-. [44] 靳晓野. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究[D]. 武汉:中国地质大学, 2017. [45] Ge X, Selby D, Liu J J, et al. Genetic relationship between hydrocarbon system evolution and Carlin-type gold mineralization:insights from Re-Os pyrobitumen and pyrite geochronology in the Nanpanjiang Basin, South China[J]. Chemical Geology, 2021, 559:119953. DOI:10.1016/j.chemgeo.2020.119953. [46] 刘东升, 耿文辉. 我国卡林型金矿的地质特征、成因及找矿方向[J/OL]. 地质与勘探, 1987(12):1-12(1987-06-30)[2021-12-18]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZKT198712000&dbname=CJFD&dbcode=CJFQ. [47] 王国田. 桂西北地区三条铷-锶等时线年龄[J/OL]. 广西地质, 1992(1):29-35(1992-04-01)[2021-12-18]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=GXDZ199201006&dbname=CJFD&dbcode=CJFQ. [48] 张峰, 杨科佑. A study on the metallogenetic epoch fine disseminated gold deposit in southwest Guizhou using the fission track[J/OL]. 中国科学通报:英文版, 1993(5):408-412(1993-01-01)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=JXTW199305014&DbName=CJFQ1993. [49] 李泽琴, 陈尚迪, 王奖臻, 等. 桂西金牙微细浸染型金矿床同位素地球化学研究[J]. 矿物岩石, 1995(2):66-72. DOI:10.19719/j.cnki.1001-6872.1995.02.012. [50] 苏文超, 杨科佑, 胡瑞忠, 等. 中国西南部卡林型金矿床流体包裹体年代学研究:以贵州烂泥沟大型卡林型金矿床为例[J]. 矿物学报, 1998(3):359-362. DOI:10.16461/j.cnki.1000-4734.1998.03.015. [51] 朱赖民, 刘显凡, 金景福, 等. 滇-黔-桂微细浸染型金矿床时空分布与成矿流体来源研究[J/OL]. 地质科学, 1998(4):463-474(1998-11-25)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DZKX804.008&DbName=CJFQ1998. [52] 刘平, 李沛刚, 马荣, 等. 一个与火山碎屑岩和热液喷发有关的金矿床:贵州泥堡金矿[J]. 矿床地质, 2006, 25(1):101-110. DOI:10.3969/j.issn.0258-7106.2006.01.013. [53] 陈懋弘, 毛景文, 吴六灵, 等. 贵州锦丰(烂泥沟)金矿成矿年代学研究新进展:兼论滇黔桂"金三角"卡林型金矿成矿时代和动力学背景[J/OL]. 矿床地质, 2006, 25(S1):7-10(2006-11-15)[2021-12-18]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=KCDZ2006S1007&dbname=CJFD&dbcode=CJFQ. [54] 陈懋弘, 黄庆文, 胡瑛, 等. 贵州烂泥沟金矿层状硅酸盐矿物及其39Ar-40Ar年代学研究[J]. 矿物学报, 2009, 29(3):353-362. DOI:10.16461/j.cnki.1000-4734.2009.03.013. [55] Chen M H, Bagas L, Liao X, et al. Hydrothermal apatite SIMS Th-Pb dating:constraints on the timing of low-temperature hydrothermal Au deposits in Nibao, SW China[J]. Lithos, 2019, 324-325:418-428. DOI:10.1016/j.lithos.2018.11.018. [56] Su W C, Hu R Z, Xia B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 2009, 258(3/4):269-274. DOI:10.1016/j.chemgeo.2008.10.030. [57] Gu X X, Zhang Y M, Li B H, et al. Hydrocarbon-and ore-bearing basinal fluids:a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China[J]. Mineralium Deposita, 2012, 47(6):663-682. DOI:10.1007/s00126-011-0388-x. [58] Wang Z P, Xia Y, Song X Y, et al. Study on the evolution of ore-formation fluids for Au-Sb ore deposits and the mechanism of Au-Sb paragenesis and differentiation in the southwestern part of Guizhou Province, China[J]. Chinese Journal of Geochemistry, 2013, 32(1):56-68. DOI:10.1007/s11631-013-0607-5. [59] 刘苏桥, 陈懋弘, 杨锋, 等. 广西金牙金矿毒砂Re-Os同位素测年和硫同位素示踪[J]. 桂林理工大学学报, 2014, 34(3):423-430. DOI:10.3969/j.issn.1674-9057.2014.03.003. [60] Chen M H, Mao J W, Li C, et al. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi "golden triangle", southwestern China[J]. Ore Geology Reviews, 2015, 64:316-327. DOI:10.1016/j.oregeorev.2014.07.019. [61] 董文斗. 右江盆地南缘辉绿岩容矿金矿床地球化学研究[D]. 北京:中国科学院大学, 2017. [62] Pi Q H, Hu R Z, Xiong B, et al. In situ SIMS U-Pb dating of hydrothermal rutile:reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China[J]. Mineralium Deposita, 2017, 52(8):1179-1190. DOI:10.1007/s00126-017-0715-y. [63] Zhu J, Zhang Z C, Santosh M, et al. Carlin-style gold Province linked to the extinct Emeishan plume[J]. Earth and Planetary Science Letters, 2020, 530(1):115940. DOI:10.1016/j.epsl.2019.115940. [64] 侯增谦, 陈文, 卢记仁. 四川峨嵋大火成岩省259 Ma大陆溢流玄武岩喷发事件:来自激光40Ar/39Ar 测年证据[J/OL]. 地质学报, 2006, 80(8):1130(2006-08-15)[2021-12-18]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZXE200608010&dbname=CJFD&dbcode=CJFQ. [65] 胡煜昭. 基于埋藏史-剥蚀史的晴隆锑矿成矿深度、成矿时间分析[J]. 矿床地质, 2010, 29(S1):403-404. DOI:10.16111/j.0258-7106.2010.s1.210. [66] Hofstra A H, Snee L W, Rye R O, et al. Age constraints on Jerritt Canyon and other carlin-type gold deposits in the Western United States; relationship to mid-Tertiary extension and magmatism[J]. Economic Geology, 1999, 94(6):769-802. DOI:10.2113/gsecongeo.94.6.769. [67] Meinhold G. Rutile and its applications in earth sciences[J]. Earth-Science Reviews, 2010, 102(1/2):1-28. DOI:10.1016/j.earscirev.2010.06.001. [68] 胡芳芳, 范宏瑞, 杨进辉, 等. 胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U-Pb测定[J]. 科学通报, 2004, 49(12):1191-1198. DOI:10.3321/j.issn:0023-074X.2004.12.014. [69] Zhou Q, Jiang Y H, Zhao P, et al. SHRIMP U-Pb dating on hydrothermal zircons:evidence for an Early Cretaceous epithermal event in the Middle Jurassic Dexing porphyry copper deposit, southeast China[J]. Economic Geology, 2012, 107(7):1507-1514. DOI:10.2113/econgeo.107.7.1507. [70] Zhang X C, Spiro B, Halls C, et al. Sediment-hosted disseminated gold deposits in southwest Guizhou, PRC:their geological setting and origin in relation to mineralogical, fluid inclusion, and stable-isotope characteristics[J]. International Geology Review, 2003, 45(5):407-470. DOI:10.2747/0020-6814.45.5.407. [71] Su W C, Heinrich C A, Pettke T, et al. Sediment-hosted gold deposits in Guizhou, China:products of wall-rock sulfidation by deep crustal fluids[J]. Economic Geology, 2009, 104(1):73-93. DOI:10.2113/gsecongeo.104.1.73. [72] Tagami T, O'Sullivan P B. Fundamentals of fission-track thermochronology[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1):19-47. DOI:10.2138/rmg.2005.58.2. [73] Feng H Y, Ju Y W, Chen B, et al. Micro-nanoscale characteristics of pyrite and its implications for gold mineralization:two cases of gold deposits in the Youjiang basin and southwestern Tianshan mountains[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(1):246-261. DOI:10.1166/jnn.2021.18744. [74] Su W C, Zhang H T, Hu R Z, et al. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China:implications for gold depositional processes[J]. Mineralium Deposita, 2012, 47(6):653-662. DOI:10.1007/s00126-011-0328-9. [75] 国家辉, 黄德保, 施立达, 等. 桂西北超微粒型金矿及其成矿和找矿模式[M]. 北京:地震出版社, 1992. [76] 王国田.桂西北微细粒浸染型JY金矿床形成机理初探[J/OL]. 南方国土资源, 1989(2):15-24(1989-07-02)[2021-12-18]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=GXDZ198902002&dbname=CJFD&dbcode=CJFQ. [77] 朱赖民, 金景福, 何明友, 等. 初论黔西南微细浸染型金矿床深源流体成矿[J/OL]. 矿物岩石地球化学通报, 1997(3):173-177(1997-07-12)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=KYDH703.008&DbName=CJFQ1997. [78] 张馨月, 胡煜昭, 刘晓震. 贵州尾若金矿床载金矿物EPMA分析与原位硫同位素特征[J]. 矿物学报, 2019, 39(1):98-107. DOI:10.16461/j.cnki.1000-4734.2019.39.012. [79] Hu X L, Gong Y J, Zeng G P, et al. Multistage pyrite in the Getang sediment-hosted disseminated gold deposit, southwestern Guizhou Province, China:insights from textures and in situ chemical and sulfur isotopic analyses[J]. Ore Geology Reviews, 2018, 99:1-16. DOI:10.1016/j.oregeorev.2018.05.020. [80] 董磊, 黄建国, 李文杰. 贵州戈塘金矿床地质特征及成因研究[J]. 西南科技大学学报, 2011, 26(3):41-44. DOI:10.3969/j.issn.1671-8755.2011.03.010. [81] Zhao J, Liang J L, Long X P, et al. Genesis and evolution of framboidal pyrite and its implications for the ore-forming process of Carlin-style gold deposits, southwestern China[J]. Ore Geology Reviews, 2018, 102:426-436. DOI:10.1016/j.oregeorev.2018.09.022. [82] Hou L, Peng H J, Ding J, et al. Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao trend, Youjiang basin, China:implications for paragenesis and source of sulfur[J]. Economic Geology, 2016, 111(2):331-353. DOI:10.2113/econgeo.111.2.331. [83] 王泽鹏, 夏勇, 宋谢炎, 等. 黔西南灰家堡卡林型金矿田硫铅同位素组成及成矿物质来源研究[J/OL]. 矿物岩石地球化学通报, 2013, 32(6):746-752, 758(2013-10-14)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=KYDH201306011&DbName=CJFQ2013. [84] Peng Y W, Gu X X, Zhang Y M, et al. Ore-forming process of the Huijiabao gold district, southwestern Guizhou Province, China:evidence from fluid inclusions and stable isotopes[J]. Journal of Asian Earth Sciences, 2014, 93:89-101. DOI:10.1016/j.jseaes.2014.06.022. [85] 郭振春. 贵州兴仁紫木凼金矿床地质特征及成因初探[J/OL]. 贵州地质, 1988(3):201-218, 295(1988-09-30)[2021-12-18]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=GZDZ198803000&dbname=CJFD&dbcode=CJFQ. [86] Xie Z J, Xia Y, Cline J S, et al. Magmatic origin for sediment-hosted Au deposits, Guizhou Province, China:in situ chemistry and sulfur isotope composition of pyrites, Shuiyindong and Jinfeng deposits[J]. Economic Geology, 2018, 113(7):1627-1652. DOI:10.5382/econgeo.2018.4607. [87] Machel H G. Bacterial and thermochemical sulfate reduction in diagenetic settings:old and new insights[J]. Sedimentary Geology, 2001, 140(1/2):143-175. DOI:10.1016/S0037-0738(00)00176-7. [88] Shen Y N, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era[J] Nature, 2001, 410:77-81. DOI:10.1038/35065071. [89] Ripley E M, Ohmoto H. A FORTRAN program for plotting mineral stabilities in the Fe-Cu-S-O system in terms of log(∑SO4/∑H2S) or logfO2 vs pH or T[J]. Computers & Geosciences, 1979, 5(3/4):289-300. DOI:10.1016/0098-3004(79)90025-6. [90] Huston D L, Sie S H, Suter G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part Ⅰ, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 1995, 90(5):1167-1196. DOI:10.2113/gsecongeo.90.5.1167. [91] 刘显凡, 刘家军, 朱赖民, 等. 滇黔桂微细浸染型金矿铅同位素组成及应用[J/OL]. 矿物岩石地球化学通报, 1997, 16(3):178-182(1997-07-12)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=KYDH703.009&DbName=CJFQ1997. [92] 陶平, 朱华, 陶勇. 黔西南凝灰岩型金矿的层控特征分析[J]. 贵州地质, 2004(1):23, 30-37. DOI:10.3969/j.issn.1000-5943.2004.01.007. [93] 王国芝, 胡瑞忠, 苏文超, 等. Fluid flow and mineralization of Youjiang basin in the Yunnan-Guizhou-Guangxi area, China[J]. Science in China(Series D:Earth Sciences), 2003(S1):99-109. DOI:10.3969/j.issn.1674-7313.2003.z1.009. [94] Qi L, Zhou M F. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology, 2008, 248(1/2):83-103. DOI:10.1016/j.chemgeo.2007.11.004. [95] Tao Y, Li C S, Hu R Z, et al. Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan Large Igneous Province, SW China[J]. Contributions to Mineralogy and Petrology, 2007, 153(3):321-337. DOI:10.1007/s00410-006-0149-5. [96] Zhang Z C, Mao J W, Wang F S, et al. Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China[J]. American Mineralogist, 2006, 91(7):1178-1183. DOI:10.2138/am.2006.1888. [97] Tassara S, González-Jiménez J M, Reich M, et al. Plume-subduction interaction forms large auriferous provinces[J]. Nature Communications, 2017, 8:843. DOI:10.1038/s41467-017-00821-z. [98] Wang X Q, Zhang B M, Lin X, et al. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016, 73:417-431. DOI:10.1016/j.oregeorev.2015.08.015. [99] 陈衍景. 大陆碰撞成矿理论的创建及应用[J/OL]. 岩石学报, 2013, 29(1):1-17(2013-01-15)[2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YSXB201301002&DbName=CJFQ2013. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn