[1] Kumar S, Wani M Y, Koh J, et al. Carbon dioxide adsorption and cycloaddition reaction of epoxides using chitosan-graphene oxide nanocomposite as a catalyst[J]. Journal of Environmental Sciences, 2018, 69:77-84. DOI:10.1016/j.jes.2017.04.013. [2] He M C, Zhao J, Li Y. First principles ab initio study of CO2 adsorption on the kaolinite (001) surface[J]. Clays and Clay Minerals, 2014, 62(2):153-160. DOI:10.1346/CCMN.2014.0620208. [3] Kaya Y. The role of CO2 removal and disposal[J]. Energy Conversion and Management, 1995, 36(6-9):375-380. DOI:10.1016/0196-8904(95)00025-9. [4] Araki S, Kiyohara Y, Tanaka S, et al. Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether[J]. Journal of Colloid and Interface Science, 2012, 388(1):185-190. DOI:10.1016/j.jcis.2012.06.061. [5] Newman A. Chemistry of clays and clay minerals[M]. Harlow:Longman Scientific and Technical, 1987:480. [6] Tabrizy V A, Hamouda A A, Soubeyrand-Lenoir E, et al. CO2 adsorption isotherm on modified calcite, quartz, and kaolinite surfaces:surface energy analysis[J]. Petroleum Science and Technology, 2013, 31(15):1532-1543. DOI:10.1080/10916466.2011.586962. [7] Chen Y H, Lu D L. Amine modification on kaolinites to enhance CO2 adsorption[J]. Journal of Colloid Interface, 2014, 436:47-51. DOI:10.1016/.jcis.2014.08.050. [8] Chen Y H, Lu D L. CO2 capture by kaolinite and its adsorption mechanism[J]. Applied Clay Science, 2015, 104:221-228. DOI:10.1016/j.clay.2014.11.036. [9] Quiroz-Estrada K, Hernández-Espinosa M, Rojas F, et al. N2 and CO2 adsorption by soils with high kaolinite content from San Juan Amecac, Puebla, México[J]. Minerals, 2016, 6(3):73. DOI:10.3390/min6030073. [10] 陈心怡,程宏飞,赵炳新,等. 高岭石基介孔复合材料的二氧化碳吸附性能[J]. 人工晶体学报,2021,50(9):1756-1764. DOI:10.16553/j.cnki.issn1000-985x.20210820.005. [11] Pang J T, Liang Y F, Masuda Y, et al. Swelling phenomena of the nonswelling clay induced by CO2 and water cooperative adsorption in Janus-surface micropores[J]. Environmental Science & Technology, 2020, 54(9):5767-5773. DOI:10.1021/acs.est.0c00499. [12] Cheng Q, Li Y B, Qiao X J, et al. Molecular modeling of ammonia gas adsorption onto the kaolinite surface with DFT study[J]. Minerals, 2020, 10(1) 46.DOI:10.3390/min10010046. [13] 王擎, 李础安, 潘朔, 等. CH4和CO2在油页岩中矿物质结构内部吸附的分子模拟[J]. 燃料化学学报, 2017, 45(11):1310-1316. DOI:10.3969/j.issn.0253-2409.2017.11.005. [14] Zhou W N, Wang H B, Yan Y Y, et al. Adsorption mechanism of CO2/CH4 in kaolinite clay:insight from molecular simulation[J]. Energy & Fuels, 2019, 33(7):6542-6551. DOI:10.1021/acs.energyfuels.9b00539. [15] Ma Y, Lu G W, Shao C J, et al. Molecular dynamics simulation of hydrocarbon molecule adsorption on kaolinite (001) surface[J]. Fuel, 2019, 237:989-1002. DOI:10.1016/j.fuel.2018.10.063. [16] Kang G X, Zhang B, Kang T H, et al. Effect of pressure and temperature on CO2/CH4 competitive adsorption on kaolinite by Monte Carlo simulations[J]. Materials, 2020, 13(12):2851. DOI:10.3390/ma13122851. [17] 左骁遥,房晓红,曾凡桂. 二氧化碳在高岭石孔隙中吸附的分子模拟[J]. 矿产综合利用,2020(1):163-167. DOI:10.3969/j.issn.1000-6532.2020.01.033. [18] Valverde J R. Molecular modelling:principles and applications[J]. Briefings in Bioinformatics, 2001, 2(2):199-200. DOI:10.1093/bib/2.2.199. [19] Schaef H T, Glezakou V A, Owen A T, et al. Surface condensation of CO2 onto kaolinite[J]. Environmental Science & Technology Letters, 2014, 1(2):142-145. DOI:10.1021/ez400169b. [20] 赵健. 软岩粘土矿物的掺杂机制及其吸附特性[D]. 北京:中国矿业大学(北京), 2013. [21] Wu D L, Jiang W, Liu X Q, et al. Theoretical study about effects of H2O and Na+ on adsorption of CO2 on kaolinite surfaces[J]. Chemical Research in Chinese Universities, 2016, 32(1):118-126. DOI:10.1007/s40242-016-5201-z. [22] Hou J L, Chen M, Zhou Y F, et al. Regulating the effect of element doping on the CO2 capture performance of kaolinite:a density functional theory study[J]. Applied Surface Science, 2020, 512:145642. DOI:10.1016/j.apsusc.2020.145642. [23] Bish D L. Rietveld refinement of the kaolinite structure at 1.5 K[J]. Clays and Clay Minerals, 1993, 41(6):738-744. DOI:10.1346/CCMN.1993.0410613. [24] Williams D J A, Williams K P. Electrophoresis and zeta potential of kaolinite[J]. Journal of Colloid and Interface Science, 1978, 65(1):79-87. DOI:10.1016/0021-9797(78)90260-6. [25] Šolc R, Gerzabek M H, Lischka H, et al. Wettability of kaolinite (001) surfaces:molecular dynamic study[J]. Geoderma, 2011, 169:47-54. DOI:10.1016/j.geoderma.2011.02.004. [26] Giese R F. Interlayer bonding in kaolinite, dickite and nacrite[J]. Clays and Clay Minerals, 1973, 21(3):145-149. DOI:10.1346/CCMN.1973.0210302. [27] 李海普,胡岳华,王淀佐, 等. 阳离子表面活性剂与高岭石的相互作用机理[J]. 中南大学学报(自然科学版), 2004, 35(2):228-233. DOI:10.3969/j.issn.1672-72072004.02.011. [28] 韩永华. 高岭石、蒙脱石表面性质及其分散机理的量子化学研究[D]. 北京:中国矿业大学(北京), 2017. [29] Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5-6):567-570. DOI:10.1524/zkri.220.5.567.65075. [30] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:Ideas, illustrations and the CASTEP code[J]. Journal of Physic:Condensed Matter, 2002,14(11):2717-2744. DOI:10.1088/0953-8984/14/11/301. [31] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868. DOI:10.1103/PhysRevLett.77.3865. [32] Ireta J, Neugebauer J, Scheffler M. On the accuracy of DFT for describing hydrogen bonds:dependence on the bond directionality[J]. The Journal of Physical Chemistry A, 2004, 108(26):5692-5698. DOI:10.1021/jp0377073. [33] Cohen M L, Schlüter M, Chelikowsky J R, et al. Self-consistent pseudopotential method for localized configurations:Molecules[J]. Physical Review B, 1975, 12(12):5575-5579. DOI:10.1103/PhysRevB.12.5575. [34] Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7):073005. DOI:10.1103/PhysRevLett.102.073005. [35] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter,1996, 54(16):11169-11186. DOI:10.1103/PhysRevB.54.11169. [36] Pack J D, Monkhorst H J. "Special points for Brillouin-zone integrations":a reply[J]. Physical Review B, 1977, 16(4):1748-1749. DOI:10.1103/PhysRevB.16.1748. [37] McLachlan A D. Self-consistent field theory of the electron spin distribution in π-electron radicals[J]. Molecular Physics, 1960, 3(3):233-252. DOI:10.1080/00268976000100281. [38] Pfrommer B G, Côté M, Louie S G, et, al. Relaxation of crystals with the Quasi-Newton method[J]. Journal of Computational Physics, 1997, 131(1):233-240. DOI:10.1006/jcph.1996.5612. [39] Rieman W III, Walton H F. Applications of ion-exchange chromatography[M]//Ion Exchange in Analytical Chemistry. Amsterdam:Elsevier, 1970:140-174. DOI:10.1016/b978-0-08-015511-1.50011-2. [40] Walton H F. Ion exchange[J]. Analytical Chemistry 1972, 44(5):256-270. DOI:10.1021/ac60313a030. [41] Hess A C, Saunders V R. Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite[J]. The Journal of Physical Chemistry, 1992, 96(11):4367-4374. DOI:10.1021/j100190a047. [42] Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies[J]. The Journal of Chemical Physics, 1955, 23(10):1841-1846. DOI:10.1063/1.1740589. [43] Gray P V, Brown D M. Density of SiO2-Si interface states[J]. Applied Physics Letters, 1966, 8(2):31-33. DOI:10.1063/1.1754468. [44] 王娟. 水合Pb(Ⅱ)、Cu(Ⅱ)和Zn(Ⅱ)离子在高岭石(001)晶面的化学吸附[D]. 山东青岛:中国海洋大学, 2014. |