Journal of University of Chinese Academy of Sciences ›› 2022, Vol. 39 ›› Issue (4): 433-448.DOI: 10.7523/j.ucas.2022.027
• Review Article • Next Articles
WANG Libing, WANG Duojun, SHEN Kewei
Received:
2020-02-15
Revised:
2022-04-01
Online:
2022-07-15
CLC Number:
WANG Libing, WANG Duojun, SHEN Kewei. Review of studies on electrical conductivity of hydrous minerals[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(4): 433-448.
Add to citation manager EndNote|Ris|BibTeX
[1] 王多君,易丽.地球深部的水[J].中国科学院研究生院学报, 2009, 26(6):721-730. DOI:10.7523/j.issn.2095-6134.2009.6.001. [2] Faccenda M. Water in the slab:a trilogy[J]. Tectonophysics, 2014, 614:1-30. DOI:10.1016/j.tecto.2013.12.020. [3] Hacker B R, Abers G A, Peacock S M. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B1):2029. DOI:10.1029/2001JB001127. [4] Hirschmann M M. Water, melting, and the deep Earth H2O cycle[J]. Annual Review of Earth and Planetary Sciences, 2006, 34:629-653. DOI:10.1146/annurev.earth.34.031405.125211. [5] 郑永飞,陈仁旭,徐峥,等.俯冲带中的水迁移[J].中国科学(地球科学), 2016, 46(3):253-286. DOI:10.1360/N072015-00493. [6] Peacock S M, Hyndman R D. Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes[J]. Geophysical Research Letters, 1999, 26(16):2517-2520. DOI:10.1029/1999GL900558. [7] Poli S, Schmidt M W. Petrology of subducted slabs[J]. Annual Review of Earth and Planetary Sciences, 2002, 30:207-235. DOI:10.1146/annurev.earth.30.091201.140550. [8] Dobson D P, Meredith P G, Boon S A. Simulation of subduction zone seismicity by dehydration of serpentine[J]. Science, 2002, 298(5597):1407-1410. DOI:10.1126/science.1075390. [9] Ferrand T P, Hilairet N, Incel S, et al. Dehydration-driven stress transfer triggers intermediate-depth earthquakes[J]. Nature Communications, 2017, 8:15247. DOI:10.1038/ncomms15247. [10] Wang D J, Liu X W, Liu T, et al. Constraints from the dehydration of antigorite on high-conductivity anomalies in subduction zones[J]. Scientific Reports, 2017, 7:16893. DOI:10.1038/s41598-017-16883-4. [11] 郭新转.高温高压下壳幔含水矿物电导率实验研究[J].中国科学D辑:地球科学, 2016, 46(3):301-312. DOI:10.1360/N072015-00342. [12] Wang D J, Mookherjee M, Xu Y S, et al. The effect of water on the electrical conductivity of olivine[J]. Nature, 2006, 443(7114):977-80. DOI:10.1038/nature05256. [13] Yoshino T, Katsura T. Electrical conductivity of mantle minerals:role of water in conductivity anomalies[J]. Annual Review of Earth and Planetary Sciences, 2013, 41:605-628. DOI:10.1146/annurev-earth-050212-124022. [14] Dai L D, Karato S I. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure[J]. Physics of the Earth and Planetary Interiors, 2009, 176(1/2):83-88. DOI:10.1016/j.pepi.2009.04.002. [15] Reynard B, Mibe K, van de Moortèle B V. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones[J]. Earth and Planetary Science Letters, 2011, 307(3/4):387-394. DOI:10.1016/j.epsl.2011.05.013. [16] Guo X Z, Yoshino T, Katayama I. Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3GPa[J]. Physics of the Earth and Planetary Interiors, 2011, 188(1/2):69-81. DOI:10.1016/j.pepi.2011.06.012. [17] Manthilake G, Mookherjee M, Bolfan-Casanova N, et al. Electrical conductivity of lawsonite and dehydrating fluids at high pressures and temperatures[J]. Geophysical Research Letters, 2015, 42(18):7398-7405. DOI:10.1002/2015GL064804. [18] Wang L B, Wang D J, Shen K W. Electrical conductivity of talc dehydration at high pressures and temperatures:implications for high-conductivity anomalies in subduction zones[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(10):e2020JB020091. DOI:10.1029/2020JB020091. [19] Manthilake G, Bolfan-Casanova N, Novella D, et al. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges[J]. Science Advances, 2016, 2(5):e1501631. DOI:10.1126/sciadv.1501631. [20] Wang D J, Karato S I. Electrical conductivity of talc aggregates at 0.5GPa:influence of dehydration[J]. Physics and Chemistry of Minerals, 2013, 40(1):11-17. DOI:10.1007/s00269-012-0541-9. [21] 王多君,马瑾,杨晓松,等.地幔矿物电导率研究进展[J].地震地质, 2007, 29(1):152-160. DOI:10.3969/j.issn.0253-4967.2007.01.014. [22] Mainprice D, Ildefonse B. Seismic anisotropy of subduction zone minerals:contribution of hydrous phases[C]//Subduction Zone Geodynamics. 2009, Springer, Berlin Heidelberg:63-84. DOI:10.1007/978-3-540-87974-9_4. [23] Pawley A R, Wood B J. The high-pressure stability of talc and 10Å phase:potential storage sites for H2O in subduction zones[J]. American Mineralogist, 1995, 80(9/10):998-1003. DOI:10.2138/am-1995-9-1015. [24] Stalder R, Ulmer P. Phase relations of a serpentine composition between 5 and 14GPa:significance of clinohumite and phase E as water carriers into the transition zone[J]. Contributions to Mineralogy and Petrology, 2001, 140(6):670-679. DOI:10.1007/s004100000208. [25] Tamura Y, Tani K, Chang Q, et al. Wet and dry basalt magma evolution at torishima volcano, izu-Bonin arc, Japan:the possible role of phengite in the downgoing slab[J]. Journal of Petrology, 2007, 48(10):1999-2031. DOI:10.1093/petrology/egm048. [26] Tsujimori T, Ernst W G. Lawsonite blueschists and lawsonite eclogites as proxies for palaeo-subduction zone processes:a review[J]. Journal of Metamorphic Geology, 2014, 32(5):437-454. DOI:10.1111/jmg.12057. [27] Xu C W, Nishi M, Inoue T. Solubility behavior of δ-AlOOH and ε-FeOOH at high pressures[J]. American Mineralogist, 2019, 104(10):1416-1420. DOI:10.2138/am-2019-7064. [28] Yoshino T, Baker E, Duffey K. Fate of water in subducted hydrous sediments deduced from stability fields of FeOOH and AlOOH up to 20GPa[J]. Physics of the Earth and Planetary Interiors, 2019, 294:106295. DOI:10.1016/j.pepi.2019.106295. [29] Nishi M, Irifune T, Tsuchiya J, et al. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle[J]. Nature Geoscience, 2014, 7(3):224-227. DOI:10.1038/nego2074. [30] Hou M Q, He Y, Jang B G, et al. Superionic iron oxide-hydroxide in Earth's deep mantle[J]. Nature Geoscience, 2021, 14(3):174-178. DOI:10.1038/s41561-021-00696-2. [31] 王多君,易丽,谢鸿森,等.交流阻抗谱法及其在地球深部物质科学中的应用[J].地学前缘, 2005, 12(1):123-129. DOI:10.3321/j.issn:1005-2321.2005.01.016. [32] Bai L J, Conway B E. AC impedance of faradaic reactions involving electrosorbed intermediates:examination of conditions leading to pseudoinductive behavior represented in three-dimensional impedance spectroscopy diagrams[J]. Journal of the Electrochemical Society, 1991, 138(10):2897-2907. DOI:10.1149/1.2085336. [33] Hu H Y, Dai L D, Li H P, et al. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(4):2751-2762. DOI:10.1002/2016JB013767. [34] Chen S B, Guo X Z, Yoshino T, et al. Dehydration of phengite inferred by electrical conductivity measurements:implication for the high conductivity anomalies relevant to the subduction zones[J]. Geology, 2018, 46(1):11-14. DOI:10.1130/g39716.1. [35] Hu H Y, Dai L D, Li H P, et al. Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole:implications for high conductivity anomalies in subduction zones and continental crust[J]. Earth and Planetary Science Letters, 2018, 498:27-37. DOI:10.1016/j.epsl.2018.06.003. [36] Pommier A, Williams Q, Evans R L, et al. Electrical investigation of natural lawsonite and application to subduction contexts[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(2):1430-1442. DOI:10.1029/2018JB016899. [37] Shen K W, Wang D J, Liu T. Electrical conductivity of tremolite under high temperature and pressure:implications for the high-conductivity anomalies in the Earth and Venus[J]. Contributions to Mineralogy and Petrology, 2020, 175(5):1-12. DOI:10.1007/s00410-020-01688-y. [38] MacDonald D D. A method for estimating impedance parameters for electrochemical systems that exhibit pseudoinductance[J]. Journal of the Electrochemical Society, 1978, 125(12):2062-2064. DOI:10.1149/1.2131363. [39] 杨晓志.电导岩石学:原理、方法和进展[J].中国科学D辑:地球科学, 2014, 44(9):1884-1900. DOI:10.1360/zd-2014-44-9-1884. [40] Huang Y S, Guo H H, Nakatani T, et al. Electrical conductivity in texturally equilibrated fluid-bearing forsterite aggregates at 800℃ and 1GPa:implications for the high electrical conductivity anomalies in mantle wedges[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(4):e2020JB021343. DOI:10.1029/2020JB021343. [41] 朱茂旭,谢鸿森,郭捷,等.高温高压下滑石的电导率实验研究[J].地球物理学报, 2001, 44(3):429-435. DOI:10.3321/j.issn:0001-5733.2001.03.016. [42] Kawano S, Yoshino T, Katayama I. Electrical conductivity of magnetite-bearing serpentinite during shear deformation[J]. Geophysical Research Letters, 2012, 39(20):L20313. DOI:10.1029/2012GL053652. [43] Guo X Z, Yoshino T. Electrical conductivity of dense hydrous magnesium silicates with implication for conductivity in the stagnant slab[J]. Earth and Planetary Science Letters, 2013, 369/370:239-247. DOI:10.1016/j.epsl.2013.03.026. [44] Guo X Z, Yoshino T. Pressure-induced enhancement of proton conduction in brucite[J]. Geophysical Research Letters, 2014, 41(3):813-819. DOI:10.1002/2013GL058627. [45] Wang R, Yoshino T. Electrical conductivity of diaspore, δ-AlOOH and ε-FeOOH[J]. American Mineralogist, 2021, 106(5):774-781. DOI:10.2138/am-2021-7605. [46] Manthilake G, Mookherjee M, Miyajima N. Insights on the deep carbon cycle from the electrical conductivity of carbon-bearing aqueous fluids[J]. Scientific Reports, 2021, 11:3745. DOI:10.1038/s41598-021-82174-8. [47] Gasc J, Brunet F, Bagdassarov N, et al. Electrical conductivity of polycrystalline Mg (OH)2 at 2GPa:effect of grain boundary hydration-dehydration[J]. Physics and Chemistry of Minerals, 2011, 38(7):543-556. DOI:10.1007/s00269-011-0426-3. [48] Yoshino T. Laboratory electrical conductivity measurement of mantle minerals[J]. Surveys in Geophysics, 2010, 31(2):163-206. DOI:10.1007/s10712-009-9084-0. [49] Karato S I. The role of hydrogen in the electrical conductivity of the upper mantle[J]. Nature, 1990, 347(6290):272-273. DOI:10.1038/347272a0. [50] Wang D J, Guo Y X, Yu Y J, et al. Electrical conductivity of amphibole-bearing rocks:influence of dehydration[J]. Contributions to Mineralogy and Petrology, 2012, 164(1):17-25. DOI:10.1007/s00410-012-0722-z. [51] Taylor H F W. Homogeneous and inhomogeneous mechanisms in the dehydroxylation of minerals[J]. Clay Minerals, 1962, 5(28):45-55. DOI:10.1180/claymin.1962.005.28.01. [52] Brady J B. Diffusion data for silicate minerals, glasses, and liquids[M]//AGU Reference Shelf. Washington, D. C.:American Geophysical Union, 1995:269-290. DOI:10.1029/rf002p0269. [53] Bose K, Ganguly J. Thermogravimetric study of the dehydration kinetics of talc[J]. American Mineralogist, 1994, 79(7/8):692-699. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/79/7-8/692/42880/Therm-ogravimetric-study-of-the-dehydration. [54] 王艳,王多君,易丽.空气气氛中滑石的热分解动力学实验研究[J].中国科学院大学学报, 2015, 32(1):70-73. DOI:10.7523/j.issn.2095-6134.2015.01.012. [55] Brady J B, McCallister R H. Diffusion data for clinopyroxenes from homogenization and self-diffusion experiments[J]. American Mineralogist, 1983, 68(1/2):95-105. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/68/1-2/95/41463/Diffusion-data-for-clinopyroxenes-from. [56] Phillips M W, Popp R K, Clowe C A. Structural adjustments accompanying oxidation-dehydrogenation in amphiboles[J]. American Mineralogist, 1988, 73(5/6):500-506. DOI:10.1016/0009-2541(88)90031-9. [57] Yoshino T, Takei Y, Wark D A, et al. Grain boundary wetness of texturally equilibrated rocks, with implications for seismic properties of the upper mantle[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B8):B08205. DOI:10.1029/2004JB003544. [58] Bulau J R, Waff H S, Tyburczy J A. Mechanical and thermodynamic constraints on fluid distribution in partial melts[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B11):6102-6108. DOI:10.1029/jb084ib11p06102. [59] von Bargen N, Waff H S. Permeabilities, interfacial areas and curvatures of partially molten systems:results of numerical computations of equilibrium microstructures[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B9):9261-9276. DOI:10.1029/jb091ib09p09261. [60] 代唯琪,黄晓葛,高春杨,等.上地幔高导物质的连通性和电导率的实验研究进展[J].地球物理学进展, 2021, 36(5):1810-1821. DOI:10.6038/pg2021EE0371. [61] Mibe K, Fujii T, Yasuda A. Connectivity of aqueous fluid in the Earth's upper mantle[J]. Geophysical Research Letters, 1998, 25(8):1233-1236. DOI:10.1029/98GL00872. [62] Shimojuku A, Yoshino T, Yamazaki D, et al. Electrical conductivity of fluid-bearing quartzite under lower crustal conditions[J]. Physics of the Earth and Planetary Interiors, 2012, 198/199:1-8. DOI:10.1016/j.pepi.2012.03.007. [63] Applin K R. The diffusion of dissolved silica in dilute aqueous solution[J]. Geochimica et Cosmochimica Acta, 1987, 51(8):2147-2151. DOI:10.1016/0016-7037(87)90263-8. [64] Manthilake G, Peng Y, Koga K T, et al. Tracking slab surface temperatures with electrical conductivity of glaucophane[J]. Scientific Reports, 2021, 11:18014. DOI:10.1038/s41598-021-97317-0. [65] 赵国泽,汤吉,詹艳,等.青藏高原东北缘地壳电性结构和地块变形关系的研究[J].中国科学D辑:地球科学, 2004, 34(10):908-918. DOI:10.3969/j.issn.1674-7240.2004.10.003. [66] 赵国泽,陈小斌,汤吉.中国地球电磁法新进展和发展趋势[J].地球物理学进展, 2007, 22(4):1171-1180. DOI:10.3969/j.issn.1004-2903.2007.04.024. [67] Ichiki M, Baba K, Toh H, et al. An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia[J]. Gondwana Research, 2009, 16(3/4):545-562. DOI:10.1016/j.gr.2009.04.007. [68] McGary R S, Evans R L, Wannamaker P E, et al. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier[J]. Nature, 2014, 511(7509):338-340. DOI:10.1038/nature13493. [69] Rouet-Leduc B, Hulbert C, Johnson P A. Continuous chatter of the Cascadia subduction zone revealed by machine learning[J]. Nature Geoscience, 2019, 12(1):75-79. DOI:10.1038/s41561-018-0274-6. [70] Tarling M S, Smith S A F, Scott J M. Fluid overpressure from chemical reactions in serpentinite within the source region of deep episodic tremor[J]. Nature Geoscience, 2019, 12(12):1034-1042. DOI:10.1038/s41561-019-0470-z. [71] Gao X, Wang K L. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature, 2017, 543(7645):416-419. DOI:10.1038/nature21389.[FL)] [ST] [WT] [LM] |
[1] | PAN Guoyong, LI Yumei, LUO Mingqi, WANG Lixian. Study on determination of soluble salts by electrical conductivity method in loess-paleosol sequence [J]. , 2014, 31(6): 791-798. |
[2] | WANG Duo-Jun, YI Li. Water in the Earth's interior [J]. , 2009, 26(6): 721-730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn