[1] Teixeira A M, Santos R J, Costa M R P F N, et al. Hydrodynamics of the mixing head in RIM: LDA flow-field characterization[J]. AIChE Journal, 2005, 51(6): 1608-1619. DOI:10.1002/aic.10454. [2] Santos R J, Teixeira A M, Lopes J C B. Study of mixing and chemical reaction in RIM[J]. Chemical Engineering Science, 2005, 60(8/9): 2381-2398. DOI:10.1016/j.ces.2004.11.050. [3] Stull F D, Craig R R, Streby G D, et al. Investigation of a dual inlet side dump combustor using liquid fuel injection[J]. Journal of Propulsion and Power, 1985, 1(1):83-88. DOI:10.2514/3.22763. [4] Hosseinalipour S M, Mujumdar A S. Flow, heat transfer and particle drying characteristics in confined opposing turbulent jets: a numerical study[J]. Drying Technology, 1995, 13(3): 753-781. DOI:10.1080/07373939508916982. [5] Johnson B K, Prud’homme R K. Mechanism for rapid self-assembly of block copolymer nanoparticles[J]. Physical Review Letters, 2003, 91(11): 118302. DOI:10.1103/PhysRevLett.91.118302. [6] Sultan M A, Fonte C P, Dias M M, et al. Experimental study of flow regime and mixing in T-jets mixers[J]. Chemical Engineering Science, 2012, 73: 388-399. DOI:10.1016/j.ces.2012.02.010. [7] Krupa K, Nunes M I, Santos R J, et al. Characterization of micromixing in T-jet mixers[J]. Chemical Engineering Science, 2014, 111: 48-55. DOI:10. 1016/j.ces.2014.02.018. [8] Li W F, Du K J, Yu G S, et al. Experimental study of flow regimes in three-dimensional confined impinging jets reactor[J]. AIChE Journal, 2014, 60(8): 3033-3045. DOI:10.1002/aic.14459. [9] Wang S J, Mujumdar A S. A numerical study of flow and mixing characteristics of three-dimensional confined turbulent opposing jets: unequal jets[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(10): 1068-1074. DOI:10.1016/j.cep.2005.02.003. [10] Srisamran C, Devahastin S. Numerical simulation of flow and mixing behavior of impinging streams of shear-thinning fluids[J]. Chemical Engineering Science, 2006, 61(15): 4884-4892. DOI:10.1016/j.ces.2006.03.031. [11] Qiu S X, Xu P, Qiao X W, et al. Flow and mixing characteristics of pulsed confined opposed jets in turbulent flow regime[J]. Heat and Mass Transfer, 2013, 49(2): 277-284. DOI:10.1007/s00231-012-1092-9. [12] Fonte C P, Sultan M A, Santos R J, et al. Flow imbalance and Reynolds number impact on mixing in Confined Impinging Jets[J]. Chemical Engineering Journal, 2015, 260: 316-330. DOI:10.1016/j.cej.2014.08.090. [13] Schwertfirm F, Gradl J, Schwarzer H C, et al. The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1429-1442. DOI:10.1016/j.ijheatfluidflow.2007.04.019. [14] Wang S J, Mujumdar A S. Three-dimensional analysis of flow and mixing characteristics of a novel in-line opposing-jet mixer[J]. Industrial & Engineering Chemistry Research, 2007, 46(2): 632-642. DOI:10.1021/ie060659z. [15] Shi Z H, Li W F, Du K J, et al. Experimental study of mixing enhancement of viscous liquids in confined impinging jets reactor at low jet Reynolds numbers[J]. Chemical Engineering Science, 2015, 138: 216-226. DOI:10.1016/j.ces.2015.08.014. [16] Zhang J W, Liu S F, Cheng C, et al. Investigation of three-dimensional flow regime and mixing characteristic in T-jet reactor[J]. Chemical Engineering Journal, 2019, 358: 1561-1573. DOI:10.1016/j.cej.2018.10.112. [17] Devahastin S, Mujumdar A S. A study of turbulent mixing of confined impinging streams using a new composite turbulence model[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4998-5004. DOI:10.1021/ie010153a. [18] Hwang Y H, Hung Y H. Turbulent transport phenomena in three-dimensional side-dump ramjet combustors[J]. International Journal of Heat and Mass Transfer, 1989, 32(11): 2113-2125. DOI:10.1016/0017-9310(89)90118-X. [19] Wang S J, Mujumdar A S. Flow and mixing characteristics of multiple and multi-set opposing jets[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(8): 703-712. DOI:10.1016/j.cep.2006.09.006. [20] Liou T M, Wu S M, Hwang Y H. Experimental and theoretical investigations of turbulent flow in a side-inlet rectangular combustor[J]. Journal of Propulsion and Power, 1990, 6(2): 131-138. DOI:10.2514/3.23234. [21] Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Proceedings of first AFOSR International Conference on DNS/LES. Greyden Press. August 4-8, 1997, Ruston, Louisiana. 1997: 137-147. [22] Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. DOI:10.1016/j.ijheatfluidflow.2008.07.001. [23] Niu J Q, Wang Y M, Zhang L, et al. Numerical analysis of aerodynamic characteristics of high-speed train with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2018, 127: 188-199. DOI:10.1016/j.ijheatmasstransfer.2018.08.041. [24] Wang J B, Minelli G, Dong T Y, et al. Impact of the bogies and cavities on the aerodynamic behaviour of a high-speed train. An IDDES study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207: 104406. DOI:10.1016/j.jweia.2020.104406. [25] Li X L, Chen G, Krajnovic S, et al. Numerical study of the aerodynamic performance of a train with a crosswind for different embankment heights[J]. Flow, Turbulence and Combustion, 2021, 107(1): 105-123. DOI:10.1007/s10494-020-00213-2. [26] Su J, Lei H, Zhou D, et al. Aerodynamic noise assessment for a vertical axis wind turbine using improved delayed detached eddy simulation[J]. Renewable Energy, 2019, 141: 559-569. DOI:10.1016/j.renene.2019.04.038. [27] Kang D G, Na H, Lee C Y. Detached eddy simulation of turbulent and thermal mixing in a T-junction[J]. Annals of Nuclear Energy, 2019, 124: 245-256. DOI:10.1016/j.anucene.2018.10.006. [28] Zhang J X, Wang J, Fan X, et al. Detached-eddy simulation of turbulent coherent structures around groynes in a trapezoidal open channel[J]. Journal of Hydrodynamics, 2020, 32(2): 326-336. DOI:10.1007/s42241-019-0077-2. [29] Kubacki S, Dick E. Hybrid RANS/LES of flow and heat transfer in round impinging jets[J]. International Journal of Heat and Fluid Flow, 2011, 32(3): 631-651. DOI:10.1016/j.ijheatfluidflow.2011.03.002. [30] Kubacki S, Rokicki J, Dick E. Hybrid RANS/LES computations of plane impinging jets with DES and PANS models[J]. International Journal of Heat and Fluid Flow, 2013, 44: 596-609. DOI:10.1016/j.ijheatfluidflow.2013.08.014. [31] Nosseir N S, Behar S. Characteristics of jet impingement in a side-dump combustor[J]. AIAA Journal, 1986, 24(11): 1752-1757. DOI:10.2514/3.9520. [32] Miau J J, Sun D J, Yao L S. Streamwise vortices generated by impinging flows in a confined duct[J]. Experiments in Fluids, 1989, 7(7): 497-500. DOI:10.1007/BF00187069. [33] Ahn K, Yoon Y. Characterization of side-dump combustor flowfield using particle image velocimetry[J]. Journal of Propulsion and Power, 2006, 22(3): 527-533. DOI:10.2514/1.20363. [34] Gritskevich M S, Garbaruk A V, Schütze J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88(3): 431-449. DOI:10.1007/s10494-011-9378-4. [35] Matsumura M, Antonia R A. Momentum and heat transport in the turbulent intermediate wake of a circular cylinder[J]. Journal of Fluid Mechanics, 1993, 250: 651-668. DOI:10.1017/s0022112093001600. [36] Hussain A K M F, Reynolds W C. The mechanics of an organized wave in turbulent shear flow[J]. Journal of Fluid Mechanics, 1970, 41(2): 241-258. DOI:10.1017/s0022112070000605. [37] 李伟锋, 孙志刚, 刘海峰, 等. 两喷嘴对置撞击流驻点偏移规律[J]. 化工学报, 2008, 59(1): 46-52. DOI:10.3321/j.issn: 0438-1157.2008.01.008. [38] Li W F, Sun Z G, Liu H F, et al. Experimental and numerical study on stagnation point offset of turbulent opposed jets[J]. Chemical Engineering Journal, 2008, 138(1/2/3): 283-294. DOI:10.1016/j.cej.2007.05.039. [39] Li W F, Yao T L, Wang F C. Study on factors influencing stagnation point offset of turbulent opposed jets[J]. AIChE Journal, 2010, 56(10): 2513-2522. DOI:10.1002/aic.12188. |