[1] Boukerche A, Oliveira H A B F, Nakamura E F, et al. Localization systems for wireless sensor networks[J]. IEEE Wireless Communications, 2007, 14(6): 6-12. DOI: 10.1109/MWC.2007.4407221. [2] Deak G, Curran K, Condell J. A survey of active and passive indoor localisation systems[J]. Computer Communications, 2012, 35(16): 1939-1954. DOI: 10.1016/j.comcom.2012.06.004. [3] Khalajmehrabadi A, Gatsis N, Akopian D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974-2002. DOI: 10.1109/COMST.2017.2671454. [4] Kirsch F, Gottinger M, Dobrev Y, et al. Advanced wireless local positioning via compressed sensing[J]. IEEE Access, 2018, 6: 25110-25120. DOI: 10.1109/ACCESS.2018.2829619. [5] Lei Q, Zhang H J, Sun H, et al. A new elliptical model for device-free localization[J]. Sensors (Basel, Switzerland), 2016, 16(4): 577. DOI: 10.3390/s16040577. [6] Wang J, Gao Q H, Pan M, et al. Device-free wireless sensing: challenges, opportunities, and applications[J]. IEEE Network, 2018, 32(2): 132-137. DOI: 10.1109/MNET.2017.1700133. [7] Zhou Z M, Wu C S, Yang Z, et al. Sensorless sensing with WiFi[J]. Tsinghua Science and Technology, 2015, 20(1): 1-6. DOI: 10.1109/TST.2015.7040509. [8] Talampas M C R, Low K S. A geometric filter algorithm for robust device-free localization in wireless networks[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1670-1678. DOI: 10.1109/TII.2015.2433211. [9] 史达亨, 刘立刚, 周斌, 等. 跨时间迁移的多源无线信号指纹融合定位方法[J]. 中国科学院大学学报, 2021, 38(6): 817-824. DOI: 10.7523/j.issn.2095-6134. 2021.06.012. [10] Wang Q H, Yiğitler H, Jäntti R, et al. Localizing multiple objects using radio tomographic imaging technology[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3641-3656. DOI: 10.1109/TVT.2015.2432038. [11] 孙保明, 郭艳, 李宁, 等. 无线传感器网络中基于压缩感知的动态目标定位算法[J]. 电子与信息学报, 2016, 38(8): 1858-1864. DOI: 10.11999/JEIT151203. [12] Yang S X, Guo Y, Li N, et al. Compressive sensing based device-free multi-target localization using quantized measurement[J]. IEEE Access, 2019, 7: 73172-73181. DOI: 10.1109/ACCESS.2019.2920482. [13] Zhang D, Ma J, Chen Q B, et al. An RF-based system for tracking transceiver-free objects[C]// Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom). March 19-23, 2007, White Plains, NY, USA. IEEE, 2007: 135-144. DOI: 10.1109/PERCOM.2007.8. [14] Wilson J, Patwari N. A fade-level skew-Laplace signal strength model for device-free localization with wireless networks[J]. IEEE Transactions on Mobile Computing, 2012, 11(6): 947-958. DOI: 10.1109/TMC.2011.102. [15] Rampa V, Savazzi S, D’Amico M, et al. Dual-target body model for device-free localization applications[C]//2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). September 9-13, 2019, Granada, Spain. IEEE, 2019: 181-186. DOI: 10.1109/APWC.2019.8870574. [16] Wang J, Gao Q H, Pan M, et al. Toward accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665-6677. DOI: 10.1109/TVT.2015.2476495. [17] Yu D P, Guo Y, Li N, et al. SA-M-SBL: an algorithm for CSI-based device-free localization with faulty prior information[J]. IEEE Access, 2019, 7: 61831-61839. DOI: 10.1109/ACCESS.2019.2916194. [18] Ma Y T, Wang B B, Ning W R, et al. PRSRTI: a novel device-free localization method using phase response shift based radio tomography imaging[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13812-13820. DOI: 10.1109/TVT.2020.3027957. |