[1] Keeling C D, Piper S. Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. IV. Critical overview[EB/OL]. Scripps Institution of Oceanography, (2001-06)[2023-03-30]. https://www.semanticscholar.org/paper/Exchanges-of-Atmospheric-CO2-and-13CO2-with-the-and-Keeling-Piper/de2acdfe1ea14d4605d0f9dd518d993e689fc8cf. [2] Friedlingstein P, Jones M W, O’Sullivan M, et al. Global carbon budget 2021[J]. Earth System Science Data, 2022, 14(4): 1917-2005. DOI: 10.5194/essd-14-1917-2022. [3] Liu L W, Chen C X, Zhao Y F, et al. China’s carbon-emissions trading: overview, challenges and future[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 254-266. DOI:10.1016/j.rser.2015.04.076. [4] Liu F, Zhang Q, Tong D, et al. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010[J]. Atmospheric Chemistry and Physics, 2015, 15(23): 13299-13317. DOI: 10.5194/acp-15-13299-2015. [5] Tong D, Zhang Q, Davis S J, et al. Targeted emission reductions from global super-polluting power plant units[J]. Nature Sustainability, 2018, 1(1): 59-68. DOI: 10.1038/s41893-017-0003-y. [6] Gong S Y, Shi Y S. Evaluation of comprehensive monthly-gridded methane emissions from natural and anthropogenic sources in China[J]. Science of the Total Environment, 2021, 784: 147116. DOI: 10.1016/j.scitotenv.2021.147116. [7] Lei R X, Feng S, Danjou A, et al. Fossil fuel CO2 emissions over metropolitan areas from space: a multi-model analysis of OCO-2 data over Lahore, Pakistan[J]. Remote Sensing of Environment, 2021, 264:112625. DOI: 10.1016/j.rse.2021.112625. [8] Ahn D Y, Hansford J R, Howe S T, et al. Fluxes of atmospheric greenhouse-gases in Maryland (FLAGG-MD): emissions of carbon dioxide in the Baltimore, MD-Washington, D.C. area[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(9): e2019JD032004. DOI: 10.1029/2019jd032004. [9] Whetstone J R. Advances in urban greenhouse gas flux quantification: the indianapolis flux experiment (INFLUX)[J]. Elementa: Science of the Anthropocene, 2018, 6:24. DOI: 10.1525/elementa.282. [10] Krings T, Gerilowski K, Buchwitz M, et al. MAMAP-a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates[J]. Atmospheric Measurement Techniques, 2011, 4(9): 1735-1758. DOI: 10.5194/amt-4-1735-2011. [11] Krings T, Neininger B, Gerilowski K, et al. Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions[J]. Atmospheric Measurement Techniques, 2018, 11(2): 721-739. DOI: 10.5194/amt-11-721-2018. [12] Hirofumi O, Kei S, Nobuhiro K, et al. Quantifying CO2 emissions from a thermal power plant based on CO2 column measurements by portable Fourier transform spectrometers[J]. Remote Sensing of Environment, 2021, 267. DOI: 10.1016/J.RSE.2021.112714. [13] Zhou M Q, Ni Q C, Cai Z N, et al. CO2 in Beijing and Xianghe observed by ground-based FTIR column measurements and validation to OCO-2/3 satellite observations[J]. Remote Sensing, 2022, 14(15):3769. DOI: 10.3390/rs14153769. [14] 吴长江, 雷莉萍, 曾招城. 不同卫星反演的大气CO2浓度差异时空特征分析[J]. 中国科学院大学学报, 2019, 36(3):331-337. DOI: 10.7523/j.issn.2095-6134.2019.03.006. [15] Ye X X, Lauvaux T, Kort E A, et al. Constraining fossil fuel CO2 emissions from urban area using OCO-2 observations of total column CO2[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(8): 1-29. DOI: 10.1029/2019jd030528. [16] Zheng B, Chevallier F, Ciais P, et al. Observing carbon dioxide emissions over China’s cities and industrial areas with the Orbiting Carbon Observatory-2[J]. Atmospheric Chemistry and Physics, 2020, 20(14): 8501-8510. DOI: 10.5194/acp-20-8501-2020. [17] Nassar R, Hill T G, McLinden C A, et al. Quantifying CO2 emissions from individual power plants from space[J]. Geophysical Research Letters, 2017, 44(19): 10,045-10,053. DOI: 10.1002/2017gl074702. [18] Nassar R, Mastrogiacomo J-P, Bateman-Hemphill W, et al. Advances in quantifying power plant CO2 emissions with OCO-2[J]. Remote Sensing of Environment, 2021, 264:112579. DOI: 10.1016/j.rse.2021.112579. [19] Hu Y Q, Shi Y S. Estimating CO2 Emissions from large scale coal-fired power plants using OCO-2 observations and emission inventories[J]. Atmosphere, 2021, 12(7): 811. DOI: 10.3390/atmos12070811. [20] Zheng T, Nassar R, Baxter M. Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations[J]. Environmental Research Letters, 2019, 14(8): 085001. DOI: 10.1088/1748-9326/ab25ae. [21] Crisp D, Pollock H R, Rosenberg R, et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products[J]. Atmospheric Measurement Techniques, 2017, 10(1): 59-81. DOI: 10.5194/amt-10-59-2017. [22] Eldering A, Taylor T E, O’Dell C W, et al. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data[J]. Atmospheric Measurement Techniques, 2019, 12(4): 2341-2370. DOI: 10.5194/amt-12-2341-2019. [23] Kiel M, Eldering A, Roten D D, et al. Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: a first look at the Los Angeles megacity[J]. Remote Sensing of Environment, 2021, 258: 112314. DOI: 10.1016/j.rse.2021.112314. [24] MacDonald C G, Mastrogiacomo J P, Laughner J L, et al. Estimating enhancement ratios of nitrogen dioxide, carbon monoxide and carbon dioxide using satellite observations[J]. Atmospheric Chemistry and Physics, 2023, 23(6): 3493-3516. DOI: 10.5194/acp-23-3493-2023. [25] 其其格, 卢晓东. 浅析托克托电厂对环境的影响及其防治措施[J]. 干旱区资源与环境, 2004, 18 (S3): 63-68. [26] 陈仁杰. 上海外高桥第三发电厂工程设计特点[J]. 电力勘测设计, 2010, (3): 34-38. DOI: 10.3969/j.issn.1671-9913.2010.03.009. [27] 顾澎. 浙江嘉兴发电厂三期工程设计的项目化管理研究[D]. 北京: 华北电力大学, 2011. [28] Pollock R, Haring R E, Holden J R, et al. The Orbiting Carbon Observatory instrument: performance of the OCO instrument and plans for the OCO-2 instrument[C]//Proc SPIE 7826, Sensors, Systems, and Next-Generation Satellites XIV, 2010, 7826: 241-253. DOI: 10.1117/12.865243. [29] Taylor T E, Eldering A, Merrelli A, et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals[J]. Remote Sensing of Environment, 2020, 251: 112032. DOI: 10.1016/j.rse.2020.112032. [30] Lin J S, Hildemann L M. Analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities[J]. Atmospheric Environment, 1996, 30(2): 239-254. DOI: 10.1016/1352-2310(95)00287-9. [31] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. DOI: 10.1002/qj.3803. [32] Gelaro R, McCarty W, Surez M J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate, 2017, 30(14): 5419-5454. DOI: 10.1175/jcli-d-16-0758.1. [33] Afsah S, Ness E. Carbon monitoring for action (CARMA): climate campaign built on questionable data-a due diligence report on CARMA’s data and methodology[J]. SSRN Electronic Journal, 2008: 1133432. DOI: 10.2139/ssrn.1133432. [34] Brusca S, Famoso F, Lanzafame R, et al. Theoretical and experimental study of Gaussian plume model in small scale system[J]. Energy Procedia, 2016, 101: 58-65. DOI: 10.1016/j.egypro.2016.11.008. [35] 杨文燕, 宋长春, 张金波. 三江平原小叶章和毛果苔草两种地表覆被下的贴地气层CO2浓度垂直分布特征[J]. 中国科学院研究生院学报, 2006, 23(5):686-691. DOI:10.7523/j.issn.2095-6134.2006.5.020. [36] Brunner D, Kuhlmann G, Marshall J, et al. Accounting for the vertical distribution of emissions in atmospheric CO2 simulations[J]. Atmospheric Chemistry and Physics, 2019, 19(7): 4541-4559. DOI: 10.5194/acp-19-4541-2019. [37] Paustian K, Ravindranath N H, Amstel A V. 2006 IPCC guidelines for national greenhouse gas inventories[R]. Environmental Science, 2006. [38] Wheeler D, Ummel K. Calculating carma: Global estimation of CO2 emissions from the power sector[J]. SSRN Electronic Journal, 2008: 1138690. DOI: 10.2139/ssrn.1138690. [39] 马学礼, 王笑飞, 孙希进,等. 燃煤发电机组碳排放强度影响因素研究[J]. 热力发电, 2022, 51 (1): 190-195. DOI: 10.19666/j.rlfd.202108176. [40] Hill T, Nassar R. Pixel size and revisit rate requirements for monitoring power plant CO2 emissions from space[J]. Remote Sensing, 2019, 11(13): 1608. DOI: 10.3390/rs11131608. 附录图A1 CO2羽流筛选流程图 Fig.A1 Flow chart of CO2 plume screening 图A2 外高桥电厂2015-03-12估算流程图 Fig.A2 Estimation flow chart of Waigaoqiao Power Plant on 2015-03-12 |