[1] Remondino F, Spera M G, Nocerino E, et al.State of the art in high density image matching[J]. The Photogrammetric Record, 2014, 29(146): 144-166. DOI: 10.1111/phor.12063. [2] Scharstein D, Szeliski R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1): 7-42. DOI: 10. 1023/A: 1014573219977. [3] Zhan Y L, Gu Y Z, Huang K, et al.Accurate image-guided stereo matching with efficient matching cost and disparity refinement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(9): 1632-1645. DOI: 10.1109/TCSVT.2015.2473375. [4] Stentoumis C, Grammatikopoulos L, Kalisperakis I, et al.On accurate dense stereo-matching using a local adaptive multi-cost approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91: 29-49. DOI: 10.1016/j.isprsjprs.2014.02.006. [5] Kordelas G A, Alexiadis D S, Daras P, et al.Enhanced disparity estimation in stereo images[J]. Image and Vision Computing, 2015, 35: 31-49. DOI: 10.1016/j.imavis.2014.12.001. [6] Marroquin J, Mitter S, Poggio T.Probabilistic solution of ill-posed problems in computational vision[J]. Journal of the American Statistical Association, 1987, 82(397):76-89. DOI: 10.1080/01621459.1987.10478393. [7] Yang Q X.A non-local cost aggregation method for stereo matching[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. June 16-21, 2012, Providence, RI, USA. IEEE, 2012:1402-1409. DOI: 10.1109/CVPR.2012.6247827. [8] Boykov Y, Veksler O, Zabih R.Fast approximate energy minimization via graph cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11):1222-1239. DOI: 10.1109/34.969114. [9] Hong L, Chen G. Segment-based stereo matching using graph cuts[C]//Proceedings of the2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. June 27 - July 2, 2004, Washington, DC, USA. IEEE, 2004: I. DOI: 10.1109/CVPR.2004.1315016. [10] Fezza S A, Ouddane S.Fast stereo matching via graph cuts[C]//International Workshop on Systems, Signal Processing and their Applications, WOSSPA. May 9-11, 2011, Tipaza, Algeria. IEEE, 2011: 115-118. DOI: 10.1109/WOSSPA.2011.5931427. [11] Hirschmuller H, Scharstein D.Evaluation of stereo matching costs on images with radiometric differences[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1582-1599. DOI: 10.1109/TPAMI.2008.221. [12] Birchfield S, Tomasi C.A pixel dissimilarity measure that is insensitive to image sampling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4):401-406. DOI: 10.1109/34.677269. [13] 邱建滨, 郑茜颖, 俞金玲. 基于融合代价和自适应惩罚项系数的立体匹配[J]. 激光与光电子学进展, 2022, 59(16): 366-371. 1615008. DOI: 10.3788/LOP202259.1615008. [14] 闫利, 王芮, 刘华, 等. 基于改进代价计算和自适应引导滤波的立体匹配[J]. 光学学报, 2018, 38(11): 257-267. DOI: 10.3788/AOS201838.1115007. [15] Kanade T, Okutomi M.A stereo matching algorithm with an adaptive window: Theory and experiment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(9):920-932. DOI: 10.1109/34.310690. [16] Hosni A, Rhemann C, Bleyer M, et al.Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2):504-511. DOI: 10.1109/TPAMI.2012.156. [17] Kendall A, Martirosyan H, Dasgupta S, et al.End-to-end learning of geometry and context for deep stereo regression[C]//2017 IEEE International Conference on Computer Vision. October 22-29, 2017, Venice, Italy. IEEE, 2017: 66-75. DOI: 10.1109/ICCV.2017.17. [18] Zhang F H,Prisacariu V,Yang R G,et al.GA-net: Guided aggregation net for end-to-end stereo matching[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 185-194. DOI: 10.1109/CVPR.2019.00027. [19] Chang J R, Chen Y S.Pyramid stereo matching network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 5410-5418. DOI: 10.1109/CVPR.2018.00567. [20] Li J Y, Hu Q W, Ai M Y.RIFT: Multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing, 2020, 29: 3296-3310. DOI: 10.1109/TIP.2019.2959244. [21] Achanta R, Shaji A, Smith K, et al.SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. DOI: 10.1109/TPAMI.2012.120. [22] 张祖勋, 张剑清. 数字摄影测量学[M]. 2版. 武汉:武汉大学出版社, 2012: 196-199. [23] Scharstein D, Szeliski R, Hirschmüller H. Middlebury stereo vision page[EB/OL]. (2017-11-15)[2023-9-7]. http://vision.middlebury.edu/stereo/. [24] Yang Q Q, Ji P, Li D X, et al.Fast stereo matching using adaptive guided filtering[J]. Image and Vision Computing, 2014, 32(3):202-211. DOI: 10.1016/j.imavis.2014.01.001. [25] Hirschmuller H.Stereo vision in structured environments by consistent semi-global matching[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. June 17-22, 2006, New York, NY, USA. IEEE, 2006: 2386-2393. DOI: 10.1109/CVPR.2006.294. [26] Tombari F, Mattoccia S, Di Stefano L.Segmentation-based adaptive support for accurate stereo correspondence[C]//Pacific-Rim Symposium on Image and Video Technology. Berlin, Heidelberg: Springer, 2007: 427-438. DOI: 10.1007/978-3-540-77129-6_38. [27] Kolmogorov V, Zabih R.Computing visual correspondence with occlusions using graph cuts[C]//Proceedings Eighth IEEE International Conference on Computer Vision. ICCV. July 7-14, 2001, Vancouver, BC, Canada. IEEE, 2002: 508-515. DOI: 10.1109/ICCV.2001.937668. [28] 祝世平, 闫利那, 李政. 基于改进Census变换和动态规划的立体匹配算法[J]. 光学学报, 2016, 36(4): 216-224. DOI: 10.3788/AOS201636.0415001. |