[1] Chen X X.Obstruction to the existence of metric whose curvature has umbilical hessian in a K-surface[J]. Communications in Analysis and Geometry, 2000, 8(2): 267-299. DOI:10.4310/CAG.2000.v8.n2.a2. [2] Chen X X.Extremal Hermitian metrics on Riemann surfaces[J]. Calculus of Variations and Partial Differential Equations, 1999, 8(3): 191-232. DOI:10.1007/s005260050123. [3] Wang G F, Zhu X H.Extremal Hermitian metrics on Riemann surfaces with singularities[J]. Duke Mathematical Journal, 2000, 104(2). DOI:10.1215/S0012-7094-00-10421-8. [4] Chen X X.Weak limits of Riemannian metrics in surfaces with integral curvature bound[J]. Calculus of Variations and Partial Differential Equations, 1998, 6(3): 189-226. DOI:10.1007/s005260050089. [5] Wu Y Y.On the character 1-form of an HCMU metric[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(2): 185-193. DOI:10.7523/j.issn.2095-6134.2009.2.006. [6] Adams R A, Fournier J J F. Sobolev spaces[M]. 2nd ed. Amsterdam: Academic Press, 2003. [7] Evans L C.Partial differential equations[M]. Providence, R.I.: American Mathematical Society, 1998. [8] Donaldson S K.Riemann surfaces[M]. Oxford: Oxford University Press, 2011. [9] Gilbarg D, Trudinger N S.Elliptic Partial Differential Equations of Second Order[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. DOI:10.1007/978-3-642-61798-0 [10] Chen Q, Wu Y Y.Character 1-form and the existence of an HCMU metric[J]. Mathematische Annalen, 2011, 351(2): 327-345. DOI:10.1007/s00208-010-0598-z. [11] Chen Q, Wu Y Y, Xu B.On one-dimensional and singular Calabi's extremal metrics whose Gauss curvatures have nonzero umbilical Hessians[J]. Israel Journal of Mathematics, 2015, 208(1): 385-412. DOI:10.1007/s11856-015-1204-6. |