[1] Yi K X, Wang D B, Yang Q, et al.Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater[J]. Science of the Total Environment, 2017, 605: 368-375. DOI:10.1016/j.scitotenv.2017.06.215. [2] Kim K S, Kam S K, Mok Y S.Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system[J]. Chemical Engineering Journal, 2015, 271: 31-42. DOI:10.1016/j.cej.2015.02.073. [3] Yu H, Zhang X, Zhao M, et al.Norfloxacin degradation by a green carbon black-Ti/SnO2-Sb electrochemical system in saline water[J]. Catalysis Today, 2019, 327: 308-314. DOI:10.1016/j.cattod.2018.04.034. [4] Zhao J G, Li Y H, Chen X R, et al.Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors[J]. Bioresource Technology, 2018, 255: 22-28. DOI:10.1016/j.biortech.2018.01.106. [5] Zhao J G, Chen X R, Wang L, et al.Effects of elevated 4-chlorophenol loads on components of polysaccharides and proteins and toxicity in an activated sludge process[J]. Chemical Engineering Journal, 2017, 330: 236-244. DOI:10.1016/j.cej.2017.07.009. [6] 彭驰, 王美娥, 廖晓兰. 城市土壤中多环芳烃分布和风险评价研究进展[J]. 应用生态学报, 2010, 21(2): 514-522. DOI:10.13287/j.1001-9332.2010.0009. [7] Avramova T, Sotirova A, Galabova D, et al.Effect of Triton X-100 and rhamnolipid PS-17 on the mineralization of phenanthrene by Pseudomonas sp. cells[J]. International Biodeterioration & Biodegradation, 2008, 62(4): 415-420. DOI:10.1016/j.ibiod.2008.03.008. [8] 马迎飞, 刘训理, 邵宗泽. 菲降解菌的筛选鉴定及其降解酶基因的研究[J]. 应用与环境生物学报, 2005, 11(2): 218-221. DOI:10.3321/j.issn: 1006-687X.2005.02.022. [9] Sivaprakasam S, Mahadevan S, Sekar S, et al.Biological treatment of tannery wastewater by using salt-tolerant bacterial strains[J]. Microbial Cell Factories, 2008, 7: 15. DOI:10.1186/1475-2859-7-15. [10] Jin B D, Niu J T, Liu Y, et al.Effects of polycyclic aromatic hydrocarbons on sludge performance for denitrification and phosphorus removal[J]. Chemical Engineering Journal, 2020, 397: 125552. DOI:10.1016/j.cej.2020.125552. [11] Jin B D, Liu Y, Li X, et al.New insights into denitrification and phosphorus removal with degradation of polycyclic aromatic hydrocarbons in two-sludge system[J]. Bioresource Technology, 2022, 346: 126610. DOI:10.1016/j.biortech.2021.126610. [12] Li S S, Hu S D, Shi S Y, et al.Microbial diversity and metaproteomic analysis of activated sludge responses to naphthalene and anthracene exposure[J]. RSC Advances, 2019, 9(40): 22841-22852. DOI:10.1039/c9ra04674g. [13] Lai C Y, Dong Q Y, Chen J X, et al.Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate[J]. Environmental Science & Technology, 2018, 52(18): 10680-10688. DOI:10.1021/acs.est.8b02374. [14] DuBois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. DOI:10.1021/ac60111a017. [15] Shen Y X, Xiao K, Liang P, et al.Improvement on the modified Lowry method against interference of divalent cations in soluble protein measurement[J]. Applied Microbiology and Biotechnology, 2013, 97(9): 4167-4178. DOI:10.1007/s00253-013-4783-3. [16] Sponza D T, Gök O.Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater[J]. Bioresource Technology, 2010, 101(3): 914-924. DOI:10.1016/j.biortech.2009.09.022. [17] Haritash A K, Kaushik C P.Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1-15. DOI:10.1016/j.jhazmat.2009.03.137. [18] Seo J S, Keum Y S, Li Q X.Bacterial degradation of aromatic compounds[J]. International Journal of Environmental Research and Public Health, 2009, 6(1): 278-309. DOI:10.3390/ijerph6010278. [19] Ladino-Orjuela G, Gomes E, da Silva R, et al. Metabolic pathways for degradation of aromatic hydrocarbons by bacteria[J]. Reviews of Environmental Contamination and Toxicology, 2016, 237: 105-121. DOI:10.1007/978-3-319-23573-8_5. [20] Jiang S, Su Y, Lu H L, et al.Influence of polycyclic aromatic hydrocarbons on nitrate reduction capability in mangrove sediments[J]. Marine Pollution Bulletin, 2017, 122(1/2): 366-375. DOI:10.1016/j.marpolbul.2017.06.076. [21] van der Zaan B M, Saia F T, Stams A J M, et al. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process[J]. Environmental Microbiology, 2012, 14(5): 1171-1181. DOI:10.1111/j.1462-2920.2012.02697.x. [22] Banach-Szott M, Debska B, Rosa E.Effect of soil pollution with polycyclic aromatic hydrocarbons on the properties of humic acids[J]. Journal of Soils and Sediments, 2014, 14(6): 1169-1178. DOI:10.1007/s11368-014-0873-9. [23] Sun Z Y, Li Y, Li M, et al.Steel pickling rinse wastewater treatment by two-stage MABR system: Reactor performance, extracellular polymeric substances (EPS) and microbial community[J]. Chemosphere, 2022, 299: 134402. DOI:10.1016/j.chemosphere.2022.134402. [24] Li T G, Liu J X.Rapid formation of biofilm grown on gas-permeable membrane induced by famine incubation[J]. Biochemical Engineering Journal, 2017, 121: 156-162. DOI:10.1016/j.bej.2017.01.008. [25] Pellicer-Nàcher C, Smets B F.Structure, composition, and strength of nitrifying membrane-aerated biofilms[J]. Water Research, 2014, 57: 151-161. DOI:10.1016/j.watres.2014.03.026. [26] Lu H J, Chandran K, Stensel D.Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. DOI:10.1016/j.watres.2014.06.042. [27] Lan M C, Li M, Liu J, et al.Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system[J]. Bioresource Technology, 2018, 270: 120-128. DOI:10.1016/j.biortech.2018.09.011. [28] Zhou Z, Qiao W M, Xing C, et al.Microbial community structure of anoxic-oxic-settling-anaerobic sludge reduction process revealed by 454-pyrosequencing[J]. Chemical Engineering Journal, 2015, 266: 249-257. DOI:10.1016/j.cej.2014.12.095. [29] Wang C, Liu Y, Lv W Z, et al.Enhancement of nitrogen removal by supplementing fluidized-carriers into the aerobic tank in a full-scale A2/O system[J]. Science of the Total Environment, 2019, 660: 817-825. DOI:10.1016/j.scitotenv.2019.01.046. [30] Mcllroy S J, Nittami T, Kanai E, et al.Re-appraisal of the phylogeny and fluorescence in situ hybridization probes for the analysis of the Competibacteraceae in wastewater treatment systems[J]. Environmental Microbiology Reports, 2015, 7(2): 166-174. DOI:10.1111/1758-2229.12215. [31] Rubio-Rincón F J, Lopez-Vazquez C M, Welles L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164. DOI:10.1016/j.watres.2017.05.001. [32] Seviour T W, Lambert L K, Pijuan M T, et al.Selectively inducing the synthesis of a key structural exopolysaccharide in aerobic granules by enriching for Candidatus “Competibacter phosphatis”[J]. Applied Microbiology and Biotechnology, 2011, 92(6): 1297-1305. DOI:10.1007/s00253-011-3385-1. [33] 张丹, 李兆格, 包新光, 等. 细菌降解萘、菲的代谢途径及相关基因的研究进展[J]. 生物工程学报, 2010, 26(6): 726-734. DOI:10.13345/j.cjb.2010.06.011. [34] 刘小娜, 李彪, 唐晨, 等. 萘的微生物降解研究进展[J]. 生物加工过程, 2019, 17(6): 581-589. DOI:10.3969/j.issn.1672-3678.2019.06.006. [35] 李永君, 赵化冰, 任河山, 等. 萘降解细菌的分离及其降解基因的分子检测[J]. 生态学杂志, 2006, 25(7): 738-742. |