[1] Crutzen P J.Geology of mankind[J]. Nature, 2002, 415(6867): 23. DOI: 10.1038/415023a.
[2] 周卫健, 赵雪, 陈宁. 中国人类世科学研究新进展[J]. 地球科学进展, 2024, 39(1): 1-11. DOI: 10.11867/j.issn.1001-8166.2024.008.
[3] Wu D, Pan L L, Kong W F, et al.Anthropocene on the eastern margin of the Tibetan Plateau: A Holocene perspective from multiple sedimentary records[J]. Anthropocene, 2024, 48: 100451. DOI: 10.1016/j.ancene.2024.100451.
[4] 刘东生. 开展“人类世” 环境研究, 做新时代地学的开拓者: 纪念黄汲清先生的地学创新精神[J]. 第四纪研究, 2004, 24(4): 369-378. DOI: 10.3321/j.issn:1001-7410.2004.04.001.
[5] Guo X L, He L S, Zhao G Y, et al.Spatial-temporal characteristics of Holocene paleosols in the Chinese Loess Plateau and paleoclimatic significance[J]. Chinese Geographical Science, 2022, 32(6): 1110-1118. DOI: 10.1007/s11769-022-1285-1.
[6] Zhou W J, An Z S, Head M J.Stratigraphic division of Holocene loess in China[J]. Radiocarbon, 1994, 36(1): 37-45. DOI: 10.1017/s0033822200014302.
[7] Jia G D, Rao Z G, Zhang J, et al.Tetraether biomarker records from a loess-paleosol sequence in the western Chinese Loess Plateau[J]. Frontiers in Microbiology, 2013, 4: 199. DOI: 10.3389/fmicb.2013.00199.
[8] 杨石岭, 丁仲礼. 黄土高原黄土粒度的空间变化及其古环境意义[J]. 第四纪研究, 2017, 37(5): 934-944. DOI: 10.11928/j.issn.1001-7410.2017.05.02.
[9] Li P, Zhang C X, Wu H B, et al.Geochemical characteristics of Holocene loess-paleosol sequences in central Chinese Loess Plateau and their implications for East Asian monsoon evolution[J]. Quaternary International, 2022, 616: 99-108. DOI: 10.1016/j.quaint.2021.10.017.
[10] Heller F, Tung-sheng L. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300(5891): 431-433. DOI: 10.1038/300431a0.
[11] 邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 27(2): 193-209. DOI: 10.3321/j.issn:1001-7410.2007.02.005.
[12] 董良, 沈中山, 邓成龙. 黄土高原靖边剖面岩石磁学性质及其古环境意义[J]. 地球物理学报, 2024, 67(8): 3060-3074. DOI: 10.6038/cjg2023R0271.
[13] Thompson R, Stober J C, Turner G M, et al.Environmental applications of magnetic measurements[J]. Science, 1980, 207(4430): 481-486. DOI:10.1126/science.207.4430.481.
[14] An Z S, Kukla G, Porter S C, et al.Late quaternary dust flow on the Chinese Loess Plateau[J]. Catena, 1991, 18(2): 125-132. DOI: 10.1016/0341-8162(91)90012-M.
[15] Ding Z L, Yu Z W, Yang S L, et al.Coeval changes in grain size and sedimentation rate of eolian loess, the Chinese Loess Plateau[J]. Geophysical Research Letters, 2001, 28(10): 2097-2100. DOI: 10.1029/2000GL006110.
[16] Sun D H, Bloemendal J, Rea D K, et al.Bimodal grain-size distribution of Chinese loess, and its Palaeoclimatic implications[J]. Catena, 2004, 55(3): 325-340. DOI: 10.1016/S0341-8162(03)00109-7.
[17] Chen J, Ji J F, Balsam W, et al.Characterization of the Chinese loess-paleosol stratigraphy by whiteness measurement[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3/4): 287-297. DOI: 10.1016/S0031-0182(02)00246-8.
[18] 何柳, 孙有斌, 安芷生. 中国黄土颜色变化的控制因素和古气候意义[J]. 地球化学, 2010, 39(5): 447-455. DOI: 10.19700/j.0379-1726.2010.05.005.
[19] Liu W G, Huang Y S, An Z S, et al.Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(3/4): 243-254. DOI: 10.1016/j.palaeo.2005.01.001.
[20] 周昆叔. 周原黄土及其与文化层的关系[J]. 第四纪研究, 1995, 15(2): 174-181, T002.
[21] 丁敏. 关中盆地东部与西部全新世成壤强度演变与气候变化高分辨率对比研究[D]. 西安: 陕西师范大学, 2015.
[22] Yang S L, Ding Z L.Advance-retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial-interglacial cycles[J]. Earth and Planetary Science Letters, 2008, 274(3/4): 499-510. DOI: 10.1016/j.epsl.2008.08.001.
[23] 贾佳, 夏敦胜, 魏海涛, 等. 耀县黄土记录的全新世东亚冬夏季风非同步演化[J]. 第四纪研究, 2009, 29(5): 966-975. DOI: 10.3969/j.issn.1001-7410.2009.05.14.
[24] 王兆夺, 黄春长, 周亚利, 等. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304. DOI: 10.11867/j.issn.1001-8166.2018.03.0293.
[25] 王瑜铭. 陕西金陵河流域全新世气候变迁与新构造运动[D]. 西安: 长安大学, 2019.
[26] Robertson A R.The CIE 1976 color-difference formulae[J]. Color Research & Application, 1977, 2(1): 7-11. DOI: 10.1002/j.1520-6378.1977.tb00104.x.
[27] Sun D H, Bloemendal J, Rea D K, et al.Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3/4): 263-277. DOI: 10.1016/S0037-0738(02)00082-9.
[28] Sun Y B, Chen J, Clemens S C, et al. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(12): 2006GC001287. DOI: 10.1029/2006GC001287.
[29] Sun Y B, He L, Liang L J, et al.Changing color of Chinese loess: Geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1131-1138. DOI: 10.1016/j.jseaes.2010.08.006.
[30] Schwertmann U.The effect of pedogenic environments on iron oxide minerals[M]// Advances in Soil Science. New York, NY: Springer New York, 1985: 171-200. DOI: 10.1007/978-1-4612-5046-3_5.
[31] 郭正堂, 刘东生, 安芷生. 渭南黄土沉积中十五万年来的古土壤及其形成时的古环境[J]. 第四纪研究, 1994, 14(3): 256-269.
[32] 吕璇泽, 李玉梅, 旺罗. 北京东灵山的无灌溉古耕作层和自然沉积层的土壤理化性质差异[J]. 中国科学院大学学报(中英文), 2025, 42(5): 632-644. DOI: 10.7523/j.ucas.2024.014.
[33] 余华贵, 祝一志, 程鹏, 等. 热解法用于礼村黄土-古土壤地层~(14)C测年[J]. 海洋地质与第四纪地质, 2009, 29(1): 73-78. DOI: 10.3724/SP.J.1140.2009.01073.
[34] Su Z, Ingersoll A P, He F.On the abruptness of Bølling-allerød warming[J]. Journal of Climate, 2016, 29(13): 4965-4975. DOI: 10.1175/jcli-d-15-0675.1.
[35] Severinghaus J P, Brook E J.Abrupt climate change at the end of the last glacial period inferred from trapped air in polar Ice[J]. Science, 1999, 286(5441): 930-934. DOI: 10.1126/science.286.5441.930.
[36] Fletcher W J, Sánchez Goñi M F, Naughton F, et al. Introduction to the Holocene climate[M]//European Glacial Landscapes. Amsterdam: Elsevier, 2024: 65-72. DOI: 10.1016/b978-0-323-99712-6.00001-5.
[37] Walker M, Johnsen S, Rasmussen S O, et al.Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records[J]. Journal of Quaternary Science, 2009, 24(1): 3-17. DOI: 10.1002/jqs.1227.
[38] Alley R B, Mayewski P A, Sowers T, et al.Holocene climatic instability: A prominent, widespread event 8200 yr ago[J]. Geology, 1997, 25(6): 483. DOI: 10.1130/0091-7613(1997)025<0483: hciapw>2.3.co;2.
[39] Kaufman D, McKay N, Routson C, et al. Holocene global mean surface temperature, a multi-method reconstruction approach[J]. Scientific Data, 2020, 7: 201. DOI: 10.1038/s41597-020-0530-7.
[40] Bond G, Showers W, Cheseby M, et al.A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates[J]. Science, 1997, 278: 1257. DOI: 10.1126/science.278.5341.1257.
[41] Ramos-Román M J, Jiménez-Moreno G, Camuera J, et al. Millennial-scale cyclical environment and climate variability during the Holocene in the western Mediterranean region deduced from a new multi-proxy analysis from the Padul record (Sierra Nevada, Spain)[J]. Global and Planetary Change, 2018, 168: 35-53. DOI: 10.1016/j.gloplacha.2018.06.003.
[42] 王绍武. 全新世北大西洋冷事件: 年代学和气候影响[J]. 第四纪研究, 2009, 29(6): 1146-1153. DOI: 10.3969/j.issn.1001-7410.2009.06.16.
[43] 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 考古学报,1972(1):15-38.
[44] 吕厚远. 周期性气候变化与人类适应[J]. 人类学学报, 2022, 41(4): 731-748. DOI: 10.16359/j.1000-3193/AAS.2022.0029.
[45] 孙兰. 陕西省新石器时代人口自然结构及其社会复杂化进程研究[D]. 成都: 西南民族大学, 2014.
[46] He K Y, Lu H Y, Jin G Y, et al.Antipodal pattern of millet and rice demography in response to 4.2 ka climate event in China[J]. Quaternary Science Reviews, 2022, 295: 107786. DOI: 10.1016/j.quascirev.2022.107786.
[47] 马怡宁. 早期社会文化发展与环境变迁[J]. 文物鉴定与鉴赏, 2021(3): 53-55. DOI: 10.3969/j.issn.1674-8697.2021.03.018.
[48] 吕厚远, 张健平. 关中地区的新石器古文化发展与古环境变化的关系[J]. 第四纪研究, 2008, 28(6): 1050-1060. DOI: 10.3321/j.issn:1001-7410.2008.06.010.
[49] 魏继印. 论气候变迁与中原文明中心地位的形成[J]. 中原文物, 2011(5): 15-24, 45. DOI: 10.3969/j.issn.1003-1731.2011.05.003.
[50] 郑红莉, 孙周勇. 周原秦汉墓葬葬俗与特征研究[J]. 文博, 2014(4): 19-25. DOI: 10.3969/j.issn.1000-7954.2014.04.003. |