欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2005, Vol. 22 ›› Issue (1): 51-58.DOI: 10.7523/j.issn.2095-6134.2005.1.008

• 论文 • 上一篇    下一篇

多重Laurent级数上的JPA与MJPA非最佳有理逼近之证

王全龙, 戴宗铎   

  1. 信息安全国家重点实验室(中国科学院研究生院) 北京100049
  • 收稿日期:2004-04-06 发布日期:2005-01-15
  • 基金资助:

    国家自然科学基金(60173016);国家973项目(1999035804)资助

Proof of the Non-Optimality of JPA and MJPA for Mult-i Formal Laurent Series

Wang Quanlong, Dai Zongduo   

  1. State Key Laboratory of Information Security, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2004-04-06 Published:2005-01-15

摘要:

基于多重Laurent级数上的高维连分式理论,以实例证明,在对多重Laurent级数作有理逼近时,JPA及MJPA皆不能保证给出最佳有理逼近。

关键词: 高维连分式变换, Jacobi-Perron算法, 修正的Jacobi-Perron算法, 最佳有理逼近

Abstract:

Based on the theory of multidimensional continued fraction, this paper verifies by example that neither JPA nor MJPA can guarantee opt imal rational approximation for mult-i formal Laurent series in general

Key words: multidimensional continued fraction transform( m-CFT), Jacob-i Perron algorithm ( JPA ), modified Jacob-i Perron algorithm(MJPA), opt imal rational approximation

中图分类号: