中国科学院大学学报 ›› 2006, Vol. 23 ›› Issue (5): 701-707.DOI: 10.7523/j.issn.2095-6134.2006.5.022
• 优秀博士论文 • 上一篇 下一篇
黄 文; 叶向东
中国科学技术大学数学系, 合肥, 230026
收稿日期:
修回日期:
发布日期:
HUANG Wen, YE Xiang-Dong
Received:
Revised:
Published:
关键词: 复杂性, 点串, 混沌, 熵, 回复属性
Abstract: In this paper, we summarize our recent work on some complexity problems in dynamical systems related to chaos, entropy and recurrence properties under the ideas of localization (pairs or tuples). We solve a long open problem by proving that Devaney chaos implies Li-Yorke one. We show that there are ’many’ compacta admitting completely scrambled homeomorphisms, which include some countable compacta, the cantor set and continua of arbitrary dimension. Using the local notions of entropy: entropy tuples and sequence entropy pairs, we characterize the structures of a topological K- system and a topological null system. Finally, we give a ner classi cation of recurrence properties in terms of weak disjointness, complexity function of an open cover, and access time set.
Key words: Complexity, tuple, chaos, entropy, recurrence property
中图分类号:
O188
O171
黄 文; 叶向东. 动力系统复杂性与点串(英文)[J]. 中国科学院大学学报, 2006, 23(5): 701-707.
HUANG Wen, YE Xiang-Dong. Complexity of Dynamical System and Tuples[J]. , 2006, 23(5): 701-707.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://journal.ucas.ac.cn/CN/10.7523/j.issn.2095-6134.2006.5.022
http://journal.ucas.ac.cn/CN/Y2006/V23/I5/701