欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2011, Vol. 28 ›› Issue (3): 288-297.DOI: 10.7523/j.issn.2095-6134.2011.3.002

• 论文 • 上一篇    下一篇

随机环境中的分枝随机游动的若干极限定理

方亮, 胡晓予   

  1. 中国科学院研究生院数学科学学院, 北京 100049
  • 收稿日期:2010-04-12 修回日期:2010-06-14 发布日期:2011-05-15
  • 基金资助:

    国家自然科学基金(10871200)资助 

Some limit theorems on branching random walks in random environments

FANG Liang, HU Xiao-Yu   

  1. School of Mathematics, Graduate University, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2010-04-12 Revised:2010-06-14 Published:2011-05-15

摘要:

假设{Zn;n=0,1,2,…}是一个随机环境中的分枝随机游动(即质点在产生后代的过程中,还作直线上随机游动), ξ ={ξ0,ξ1,ξ2,…} 为环境过程. 记Z(n,x)为落在区间(-∞, x]中的第n代质点的个数,fξn(s)=j=0 pξn(j)sj 为第n代个体的生成函数, mξn=fξn' (1). 证明了在特定条件下,存在随机序列{tn}使得Z(n,tn)(∏i=0n-1mξi)-1均方收敛到一个随机变量.对于依赖于代的分枝随机游动,仍有类似的结论.

关键词: 分枝过程, 随机环境中的分枝随机游动, 依赖于代的分枝随机游动

Abstract:

Suppose {Zn;n=0,1,2,…} is a branching random walk in the random environment, and ξ ={ξ0,ξ1,ξ2, …} is the environment process. Let Z(n,x) be the number of the nth generation located in the interval (-∞, x], fξn(s)=j=0 pξn(j)sj be the generating function of the distribution of the particle in the nth generation, and mξn=fξn' (1). We show that under the specific conditions, there exists a sequence of random variables {tn}, so that Z(n,tn)(∏i=0n-1mξi)-1 converges in L2. For branching random walks in varying environments, we have similar results.

Key words: branching process, branching random walks in random environments, branching random walks in varying environments

中图分类号: