欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2016, Vol. 33 ›› Issue (2): 145-149.DOI: 10.7523/j.issn.2095-6134.2016.02.001

• 数学与物理学 •    下一篇

变化环境中Galton-Watson过程的重对数律

南晓杰   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2015-03-03 修回日期:2015-05-18 发布日期:2016-03-15
  • 通讯作者: 南晓杰
  • 基金资助:

    Supported by National Natural Science Foundation of China(11171342)

Law of iterated logarithm of Galton-Watson processes in varying environment

NAN Xiaojie   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-03-03 Revised:2015-05-18 Published:2016-03-15
  • Supported by:

    Supported by National Natural Science Foundation of China(11171342)

摘要:

借助Berry-Esseen引理和Asmussen对条件Borel-Cantelli 引理的重要推广, 在变化环境中上临界分枝过程的每一代每一个个体的后代个体总数的 2 阶矩有一致上下界的情况下, 得到变化环境中分枝过程的重对数律, 从而改进了在相应的2+δ阶矩有限条件下的证明.

关键词: 变化环境, 分枝过程, 重对数律

Abstract:

By the Berry-Esseen lemma and an important extension of the conditional Borel-Cantelli lemma (Asmussen, Trans Am Math Soc,1977,231:233), we obtain the law of the iterated logarithm of the branching processes in varying environment under the condition that the second moment of the number of the offspring of each individual of each generation is uniformly upper/lower bounded. Further more, the condition is weaker than that of Gao(Gao, UCAS, Thesis 2011).

Key words: varying environment, branching process, law of the iterated logarithm

中图分类号: