欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2018, Vol. 35 ›› Issue (6): 735-742.DOI: 10.7523/j.issn.2095-6134.2018.06.004

• 数学与物理学 • 上一篇    下一篇

层状SnSe2材料中锂离子吸附和迁移的第一性原理研究

方林灿1, 郝宽荣1, 闫清波1, 郑庆荣2   

  1. 1 中国科学院大学材料科学与光电技术学院, 北京 100049;
    2 中国科学院大学物理科学学院, 北京 100049
  • 收稿日期:2017-09-27 修回日期:2017-11-15 发布日期:2018-11-15
  • 通讯作者: 闫清波
  • 基金资助:
    Supported by National Basic Research Program (2012CB932900)

Adsorption and migration of Li-ion in layered SnSe2: a first principle study

FANG Lincan1, HAO Kuanrong1, YAN Qingbo1, ZHENG Qingrong2   

  1. 1 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
    2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-09-27 Revised:2017-11-15 Published:2018-11-15
  • Supported by:
    Supported by National Basic Research Program (2012CB932900)

摘要: 使用第一性原理方法系统地计算研究层状SnSe2材料中锂离子吸附和迁移。发现锂原子在SnSe2表面被强烈吸附,结合能(>3eV)显著大于石墨烯、磷烯、MoS2等二维层状材料。Bader电荷分析表明锂原子的几乎整个2s电子电荷都转移给了SnSe2,锂原子以正离子的形式存在。单层SnSe2表面锂离子的迁移势垒为0.197eV,低于石墨烯、MoS2等二维层状材料。基于单层SnSe2的锂离子电池理论,平均开路电压为3.05V。此外,锂离子的插入也带来了从半导体态向金属态的转变,从而具有较好的电导率。这些发现增进了对层状过渡金属二硫化物材料中锂离子吸附性质和迁移机制的理解。

关键词: 二硒化锡, 锂离子吸附, 锂离子迁移, 第一性原理计算

Abstract: The properties of Li-ion adsorption and migration in layered SnSe2 are systematically investigated using the first principle calculations. It is found that the Li atoms are adsorbed strongly on substrate SnSe2, and the binding energy (>3eV) is significantly higher than those on graphene, phosphorene, MoS2, and some other two-dimensional (2D) layered materials. Bader charge analysis reveals that almost the whole charge of 2s electron of the Li atom transfers to substrate SnSe2 and Li exists in the cationic state. The Li-ion migration energy barrier for monolayer SnSe2 is 0.197eV, which is significantly lower than those for graphene, MoS2, and other 2D materials. The average open-circuit voltage of 3.05V is predicted in the monolayer SnSe2-based Li-ion battery. The Li intercalation also leads to a transition from semiconductor to metallic state and gives rise to a good electrical conductivity. These findings provide insights into the Li-ion adsorption properties and migration mechanism in layered transition-metal dichalcogenide.

Key words: SnSe2, Li-ion adsorption, Li-ion migration, first principle calculation

中图分类号: