欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2019, Vol. 36 ›› Issue (5): 577-580.DOI: 10.7523/j.issn.2095-6134.2019.05.001

• 数学与物理学 •    下一篇

限制在闭超曲面上的卷积

杜文奎, 燕敦验   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2018-04-13 修回日期:2018-04-27 发布日期:2019-09-15
  • 通讯作者: 杜文奎
  • 基金资助:
    Supported by the National Nature Science Foundation of China (11471309,11561062)

Convolution integral restricted on closed hypersurfaces

DU Wenkui, YAN Dunyan   

  1. College of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-04-13 Revised:2018-04-27 Published:2019-09-15
  • Supported by:
    Supported by the National Nature Science Foundation of China (11471309,11561062)

摘要: 经典的欧氏空间中的卷积如下给出。对fL1(Rn)和gLp(Rn),
Tfg)(x)∶f*gx)=∫Rnfx-ygy)dy.
这样的卷积在分析、物理和工程上都有广泛的应用。经典的Young不等式表明,对1≤p≤∞,Tf:Lp(Rn)→Lp(Rn)是有界线性算子。得到限制在一个闭超曲面(欧氏空间中的余维数为1的紧致无边连通正则子流形)上的卷积的Lp模估计的大小。更精确地说,把Young不等式推广到了闭超曲面上。

关键词: 卷积, 闭超曲面, 有界性

Abstract: The classical convolution integral on Euclidean space is given as follows. For fL1(Rn) and gLp(Rn), Tf(g) is defined as
Tf(g)(x):f*g(x)=∫Rnf(x-y)g(y)dy.
It has many applications in analysis and engineering. Young's inequality demonstrates that Tf:Lp(Rn)→Lp(Rn) is a bounded operator for 1 ≤ p ≤ ∞. In this study, we have obtained the estimation of the Lp norm of convolution integral restricted on closed hypersurfaces. More precisely, we have established Young's inequality on closed hypersurfaces.

Key words: convolution integral, closed hypersurface, boundedness

中图分类号: