[1] German C R, Ramirez-Llodra E, Baker M C, et al. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond:a proposed deep-ocean road map[J]. PLoS One, 2011, 6(8):e23259. [2] Wynn R B, Huvenne V A I, Le Bas T P, et al. Autonomous underwater vehicles (AUVs):their past, present and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352:451-468. [3] The U S Department of Defense. Unmanned systems integrated roadmap 2017-2042[R/OL]. (2018-08-30)[2019-05-08]. https://news.usni.org/2018/08/30/pentagon-unmanned-systems-integrated-roadmap-2017-2042. [4] German C R, Jakuba M V, Kinsey J C, et al. A long-term vision for long-range ship-free deep ocean operations:persistent presence through coordination of autonomous surface vehicles and autonomous underwater vehicles[C]//2012 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, 2012:1-7. [5] SeaTrepid International, LLC. Seatrepid deepsea (SDA)[EB/OL]. (2019-04-29)[2019-05-08]. https://seatrepid.com/about-us/seatrepid-deepsea-sda/. [6] Ocean Infinity Seabed Intelligence. The world's most advanced fleet of autonomous vehicles[EB/OL]. (2019-07-16)[2019-09-01]. https://oceaninfinity.com/technology/. [7] Christ B, Klara J. A new approach to wide area survey multiple AUV application[C]//OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016:1-6. [8] Kim K, Tamura K. The Zipangu of the sea project overview:focusing on the R&D for simultaneous deployment and operation of multiple AUVs[C]//Offshore Technology Conference Asia. Offshore Technology Conference, 2016. [9] Hushcraft Limited. Hushcraft unveils SEA-KIT USV[EB/OL]. (2019-05-23)[2019-09-01]. http://www.hushcraft.com/hushcraft-unveils-sea-kit-usv/. [10] Abreu P C, Bayat M, Botelho J, et al. Cooperative formation control in the scope of the EC MORPH project:Theory and experiments[C]//OCEANS 2015-Genova. IEEE, 2015:1-7. [11] Kongsberg. Kongsberg maritime[EB/OL]. (2019-08-28)[2019-09-01]. https://www.kongsberg.com/maritime. [12] Kongsberg Maritime. HUGIN autonomous underwater vehicle, HUGIN[EB/OL]. (2019-08-28)[2019-09-01]. https://www.kongsberg.com/maritime/products/marine-robotics/autonomous-underwater-vehicles/AUV-hugin/. [13] Urabe T, Ura T, Tsujimoto T, et al. Next-generation technology for ocean resources exploration (Zipangu-in-the-Ocean) project in Japan[C]//OCEANS 2015-Genova. IEEE, 2015:1-5. [14] Cabinet Office of Japan. Pioneering the future:Japanese science, technology and innovation[R/OL]. (2017-10-20)[2019-09-01].http://www8.cao.go.jp/cstp/panhu/sip_english/sip_en.html. [15] Nakatani T, Hyakudome T, Sawa T, et al. Development of an autonomous surface vehicle for monitoring underwater vehicles[C]//OCEANS 2015-MTS/IEEE Washington. IEEE, 2015:1-5. [16] Sasano M, Inaba S, Okamoto A, et al. Development of a semi-submersible autonomous surface vehicle for control of multiple autonomous underwater vehicles[C]//2016 Techno-Ocean (Techno-Ocean). IEEE, 2016:309-312. [17] Okamoto A, Tamura K, Sasano M, et al. Development of hovering-type AUV "HOBA-LIN" for exploring seafloor hydrothermal deposits[C]//OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016:1-4. [18] Seta T, Okamoto A, Inaba S, et al. Development of a new operating system software for a hovering-type autonomous underwater vehicle HOBALIN[C]//2017 11th Asian Control Conference (ASCC). IEEE, 2017:37-42. [19] Sasano M, Inaba S, Okamoto A, et al. Development of a regional underwater positioning and communication system for control of multiple autonomous underwater vehicles[C]//2016 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, 2016:431-434. [20] Nakatani T, Hyakudome T, Sawa T, et al. ASV MAINAMI for AUV monitoring and its sea trial[C]//2016 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, 2016:301-306. [21] Inaba S, Sasano M, Kim K, et al. Tracking experiment of multiple AUVs by a semi-submersible ASV[C]//2017 IEEE Underwater Technology (UT). IEEE, 2017:1-4. [22] Zwolak K, Simpson B, Anderson B, et al. An unmanned seafloor mapping system:The concept of an AUV integrated with the newly designed USV SEA-KIT[C]//OCEANS 2017-Aberdeen. IEEE, 2017:1-6. [23] Proctor A A, Zarayskaya Y, Bazhenova E, et al. Unlocking the power of combined autonomous operations with underwater and surface vehicles:success with a deep-water survey AUV and USV mothership[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). IEEE, 2018:1-8. [24] Shell Ocean Discovery XPRIZE. Discovering the mysteries of the deep sea[EB/OL]. (2019-05-31)[2019-09-01] http://oceandiscovery.xprize.org/prizes/ocean-discovery. [25] Kalwa J, Carreiro-Silva M, Tempera F, et al. The MORPH concept and its application in marine research[C]//2013 MTS/IEEE OCEANS-Bergen. IEEE, 2013:1-8. [26] Abreu P C, Bayat M, Pascoal A M, et al. Formation control in the scope of the MORPH project. Part Ⅱ:Implementation and results[J]. IFAC-PapersOnLine, 2015, 48(2):250-255. [27] Aguiary A, Almeiday J, Bayaty M, et al. Cooperative autonomous marine vehicle motion control in the scope of the EU GREX project:theory and practice[C]//Oceans 2009-Europe. IEEE, 2009:1-10. [28] Vasilijevic A, Calado P, Lopez-Castejon F, et al. Heterogeneous robotic system for underwater oil spill survey[C]//OCEANS 2015-Genova. IEEE, 2015:1-7. [29] Vasilijević A, Nađ D, Mandić F, et al. Coordinated navigation of surface and underwater marine robotic vehicles for ocean sampling and environmental monitoring[J]. IEEE/ASME transactions on mechatronics, 2017, 22(3):1174-1184. [30] Norgren P, Ludvigsen M, Ingebretsen T, et al. Tracking and remote monitoring of an autonomous underwater vehicle using an unmanned surface vehicle in the Trondheim fjord[C]//OCEANS 2015-MTS/IEEE Washington. IEEE, 2015:1-6. [31] Rodionov A Y, Kulik S Y, Unru P P. Some trial results of the hydro acoustical communication system operation for AUV and ASV group control and navigation[C]//OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016:1-8. [32] Ji D X, Ren S Z, Zheng R, et al. A tracking control method of ASV following AUV[C]//2013 OCEANS-San Diego. IEEE, 2013:1-4. [33] Sinisterra A, Dhanak M, Kouvaras N. A USV platform for surface autonomy[C]//OCEANS 2017-Anchorage. IEEE, 2017:1-8. [34] Yan Z, Jouandeau N, Cherif A A. A survey and analysis of multi-robot coordination[J]. International Journal of Advanced Robotic Systems, 2013, 10(12):399. [35] Cao X, Zhu D. A survey of cooperative hunting control algorithms for multi-AUV systems[C]//Proceedings of the 32nd Chinese Control Conference. IEEE, 2013:5791-5795. [36] Sharma S, Tiwari R. A survey on multi robots area exploration techniques and algorithms[C]//2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT). IEEE, 2016:151-158. [37] Liu Y, Bucknall R. A survey of formation control and motion planning of multiple unmanned vehicles[J]. Robotica, 2018, 36(7):1019-1047. [38] Hu C, Fu L, Yang Y. Cooperative navigation and control for surface-underwater autonomous marine vehicles[C]//2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2017:589-592. [39] Siesjoe J. An underwater robotics platform for hybrid AUV/ROV systems[C]//Offshore Technology Conference. Offshore Technology Conference, 2018. [40] Lyu B, Zeng Z, Lu D, et al. Combined small-sized USV and ROV observation system for long-term, large-scale, spatially explicit aquatic monitoring[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). IEEE, 2018:1-6. [41] Jung D W, Hong S M, heon Lee J, et al. A study on unmanned surface vehicle combined with remotely operated vehicle system[J]. Proceedings of Engineering and Technology Innovation, 2018, 9:17. [42] Wu Y. Coordinated path planning for an unmanned aerial-aquatic vehicle (UAAV) and an autonomous underwater vehicle (AUV) in an underwater target strike mission[J]. Ocean Engineering, 2019, 182:162-173. [43] Cui R, Sam Ge S, Voon Ee How B, et al. Leader-follower formation control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2010, 37(17/18):1491-1502. [44] Shao J, Xie G, Wang L. Leader-following formation control of multiple mobile vehicles[J]. IET Control Theory & Applications, 2007, 1(2):545-552. [45] Lewis M A, Tan K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous robots, 1997, 4(4):387-403. [46] Zhou Z, Yuan J, Zhang W, et al. Formation control based on a virtual-leader-follower hierarchical structure for autonomous underwater vehicles[J]. International journal of advancements in computing technology, 2012, 4(2):111-121. [47] Jia Q, Li G. Formation control and obstacle avoidance algorithm of multiple autonomous underwater vehicles (AUVs) based on potential function and behavior rules[C]//2007 IEEE international conference on automation and logistics. IEEE, 2007:569-573. [48] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[M]//Autonomous robot vehicles. Springer, New York, NY, 1986:396-404. [49] Zhang M, Shen Y, Wang Q, et al. Dynamic artificial potential field based multi-robot formation control[C]//2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. IEEE, 2010:1530-1534. [50] Brooks R. A robust layered control system for a mobile robot[J]. IEEE Journal on Robotics and Automation, 1986, 2(1):14-23. [51] Pentzer J, Crosbie B, Bean T, et al. Measurement of magnetic field using collaborative AUVs[C]//OCEANS'10 IEEE SYDNEY. IEEE, 2010:1-7. [52] Kumar R, Stover J A. A behavior-based intelligent control architecture with application to coordination of multiple underwater vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2000, 30(6):767-784. [53] Soares J M, Aguiar A P, Pascoal A M, et al. Joint ASV/AUV range-based formation control:theory and experimental results[C]//2013 IEEE International Conference on Robotics and Automation. IEEE, 2013:5579-5585. [54] Leonard N E, Paley D A, Lekien F, et al. Collective motion, sensor networks, and ocean sampling[J]. Proceedings of the IEEE, 2007, 95(1):48-74. [55] Zhu D, Zhao Y, Yan M. A bio-inspired neurodynamic-based backstepping path-following control of an AUV with ocean current[J]. International Journal of Robotics and Automation, 2012, 27(3):298. [56] Hu J, Zhu Q B. A multi-robot hunting algorithm based on dynamic prediction for trajectory of the moving target and hunting points[J]. Acta Electronica Sinica, 2011, 39(11):2480-2485. [57] Chen M, Zhu D. A novel cooperative hunting algorithm for inhomogeneous multiple autonomous underwater vehicles[J]. IEEE Access, 2018, 6:7818-7828. [58] Jia Q, Xu H, Feng X, et al. Research on cooperative area search of multiple underwater robots based on the prediction of initial target information[J]. Ocean Engineering, 2019, 172:660-670. [59] Smith R G. The contract net protocol:High-level communication and control in a distributed problem solver[J]. IEEE Transactions on computers, 1980(12):1104-1113. [60] Werger B B, Mataric M J. Broadcast of local eligibility:behavior-based control for strongly cooperative robot teams[C]//International Conference on Autonomous Agents:Proceedings of the fourth international conference on Autonomous agents. 2000, 3(07):21-22. [61] Zhu A, Yang S X. A neural network approach to dynamic task assignment of multirobots[J]. IEEE transactions on neural networks, 2006, 17(5):1278-1287. [62] Dai W, Lu H, Xiao J, et al. Task allocation without communication based on incomplete information game theory for multi-robot systems[J]. Journal of Intelligent & Robotic Systems, 2019, 94(3-4):841-856. [63] Bagnitckii A, Inzartsev A, Lebedko O, et al. A survey of underwater areas using a group of AUVs[C]//2017 IEEE Underwater Technology (UT). IEEE, 2017:1-6. [64] Li B, Page B R, Hoffman J, et al. Rendezvous planning for multiple AUVs with mobile charging stations in dynamic currents[J]. IEEE Robotics and Automation Letters, 2019, 4(2):1653-1660. [65] Zhu D, Qu Y, Yang S X. Multi-AUV SOM task allocation algorithm considering initial orientation and ocean current environment[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(3):330-341. [66] Paull L, Saeedi S, Seto M, et al. AUV navigation and localization:A review[J]. IEEE Journal of Oceanic Engineering, 2013, 39(1):131-149. [67] Zhu D, Huang H, Yang S X. Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace[J]. IEEE Transactions on Cybernetics, 2013, 43(2):504-514. [68] Yan Z, Xu D, Chen T, et al. Leader-follower formation control of UUVs with model uncertainties, current disturbances, and unstable communication[J]. Sensors, 2018, 18(2):662. [69] Brasseur L, Tamburri M, Plueddemann A. Sensor needs and readiness levels for ocean observing:an example from the ocean observatories initiative (OOI)[C]//Proceedings of OceanObs' 09:Sustained Ocean Observations and Information for Society. European Space Agency,2010. [70] Djapic V, Nad D, Mandic F, et al. Navigational Challenges in Diver-AUV interaction for underwater mapping and intervention missions[J]. IFAC-PapersOnLine, 2018, 51(29):366-371. [71] Shen Y, Hu P, Jin S, et al. Design of novel shaftless pump-jet propulsor for multi-purpose long-range and high-speed autonomous underwater vehicle[J]. IEEE transactions on magnetics, 2016, 52(7):1-4. [72] Zhang T, Chen L, Yan Y. Underwater positioning algorithm based on SINS/LBL integrated system[J]. IEEE Access, 2018, 6:7157-7163. [73] Sarda E I, Dhanak M R. A USV-Based automated launch and recovery system for AUVs[J]. IEEE Journal of Oceanic Engineering, 2017, 42(1):37-55. [74] Pinto V Í H, Cruz N A, Almeida R M, et al. ALARS-Automated Launch and Recovery System for AUVs[C]//OCEANS 2018 MTS/IEEE Charleston. IEEE, 2018:1-6. [75] Sato Y, Maki T, Masuda K, et al. Autonomous docking of hovering type AUV to seafloor charging station based on acoustic and visual sensing[C]//2017 IEEE Underwater Technology (UT). IEEE, 2017:1-6. [76] Liang Q, Sun T, Wang D. Reliability indexes for multi-AUV cooperative systems[J]. Journal of Systems Engineering and Electronics, 2017, 28(1):179-186. [77] Hirakawa Y, Yoda T, Takayama T, et al. Motion compensator for acoustic device mounted on autonomous surface vehicle[C]//OCEANS 2015-MTS/IEEE Washington. IEEE, 2015:1-4. [78] Nakatani T, Ishibashi S, Hyakudome T, et al. Working-AUV "Otohime" and its sea trials at Sagami Bay[C]//2013 IEEE International Underwater Technology Symposium (UT). IEEE, 2013:1-5. |