[1] Lauritzen S L. Graphical Models[M]. New York: Oxford University Press, 1996. [2] Liu W. Gaussian graphical model estimation with false discovery rate control[J]. Ann Statist, 2013, 41(6): 2948-2978. [3] Janková J, van de Geer S. Confidence intervals for high-dimensional inverse covariance estimation[J]. Electron J Statist, 2015, 9: 1205-1229. [4] Janková J, Van de Geer S. Honest confidence regions and optimality in high-dimensional precision matrix estimation[J]. Test, 2017, 26(1): 143-162. [5] Bühlmann P. Statistical significance in high-dimensional linear models[J]. Bernoulli, 2013, 19(4): 1212-1242. [6] Javanmard A, Montanari A. Confidence intervals and hypothesis testing for high-dimensional regression[J]. J Mach Learn Res, 2014, 15: 2869-2909. [7] van de Geer S, Bühlmann P, Ritov Y, et al. On asymptotically optimal confidence regions and tests for high-dimensional models[J]. Ann Statist, 2014, 42(3): 1166-1202. [8] Zhang C, Zhang S. Confidence intervals for low dimensional parameters in high dimensional linear models[J]. J R Stat Soc Ser B Stat Methodol, 2014, 76(1): 217-242. [9] Chernozhukov V, Chetverikov D, Kato K. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors[J]. Ann Statist, 2013, 41(6): 2786-2819. [10] Chernozhukov V, Chetverikov D, Kato K. Comparison and anti-concentration bounds for maxima of Gaussian random vectors[J]. Probability Theory and Related Fields, 2015, 162: 47-70. [11] Chernozhukov V, Chetverikov D, Kato K. Central limit theorems and bootstrap in high dimensions[J]. Annals of Probability, 2016, 45(4): 2309-2352. [12] Zhang X, Cheng G. Simultaneous inference for high-dimensional linear models[J]. J Amer Statist Assoc, 2016, 112(2): 757-768. [13] Neykov M, Lu J, Liu H. Combinatorial inference for graphical models[J]. Ann Statist, 2019, 47(6): 795-827. [14] Cai T, Liu W, Luo X. A constrained l1 minimization approach to sparse precision matrix estimation[J]. J Amer Statist Assoc, 2011, 106(494): 594-607. [15] Liu W D, Luo X. Fast and adaptive sparse precision matrix estimation in high dimensions[J]. Journal of Multivariate Analysis, 2015, 135(4): 153-162. [16] Fan Y, Lv J. Innovated scalable efficient estimation in ultra-large gaussian graphical models[J]. Ann Statist, 2016, 44(5): 2098-2126. [17] Vershynin R. Introduction to the non-asymptotic analysis of random matrices[M]//Eldar Y C, Kutyniok G. Compressed sensing: theory and applications. Cambridge: Cambridge University Press, 2012. |