欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2022, Vol. 39 ›› Issue (5): 639-647.DOI: 10.7523/j.ucas.2021.0011

• 电子信息与计算机科学 • 上一篇    下一篇

基于图像分割和EM算法的PolSAR地物分类方法

曹哲1,2, 冯珊珊1,2, 孙显1, 洪文1,2   

  1. 1. 中国科学院空天信息创新研究院 中国科学院空间信息处理与应用系统技术重点实验室, 北京 100190;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2020-11-27 修回日期:2021-02-07 发布日期:2021-05-31
  • 通讯作者: 洪文
  • 基金资助:
    国家重点研发计划(2018YFC1505103)资助

PolSAR terrain classification based on image segmentation and EM algorithm

CAO Zhe1,2, FENG Shanshan1,2, SUN Xian1, HONG Wen1,2   

  1. 1. CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-11-27 Revised:2021-02-07 Published:2021-05-31

摘要: 在极化合成孔径雷达(PolSAR)地物分类研究中,基于卷积神经网络的图像分割算法存在高维特征信息冗余而导致的分类边界模糊、分类精度低、计算复杂等不足,提出一种基于卷积神经网络和EM算法的轻量化图像分割网络,称为低秩重构网络(low-rank-reconstruction-net,LRR-Net),应用于全极化SAR图像的地物分类。LRR-Net从极化目标分解的思想出发,利用EM算法对特征进行低秩重构,将特征从高维空间映射到低维空间,在减少参数的同时实现更精确的分类。用高分三号全极化图像数据对模型进行训练测试并评估,结果表明模型在保证分类精度的前提下,降低了模型复杂度。

关键词: 极化SAR, 地物分类, 神经网络, 低秩重构

Abstract: In the study of the terrain classification based on the polarimetric synthetic aperture radar (PolSAR), the image segmentation algorithm based on deep neural network has the disadvantages of fuzzy classification boundary, low classification accuracy and complicated calculation caused by the redundancy of high-dimensional feature information. This paper proposes a lightweight segmentation network based on convolutional neural network and EM algorithm called low-rank-reconstruction-net (LRR-Net), which is applied to the terrain classification of fully PolSAR images. Starting from the idea of polarimetric target decomposition, LRR-Net uses the EM algorithm to perform low-rank reconstruction of features, maps the features from high-dimensional space to low-dimensional space, achieving higher classification accuracy while reducing parameters. The model is trained and evaluated in GF-3 fully PolSAR dataset, and the results show that the model complexity is reduced under the guarantee of the classification accuracy.

Key words: PolSAR, terrain classification, neural network, low-rank reconstruction

中图分类号: