欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2023, Vol. 40 ›› Issue (1): 93-100.DOI: 10.7523/j.ucas.2021.0019

• 电子信息与计算机科学 • 上一篇    

基于改进的YOLOv3和Facenet的无人机影像人脸识别

高锦风1,2, 陈玉1, 魏永明1, 李剑南1,2   

  1. 1. 中国科学院空天信息创新研究院, 北京 100094;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2021-01-15 修回日期:2021-03-12 发布日期:2021-05-31
  • 通讯作者: 魏永明,E-mail:weiym@aircas.ac.cn
  • 基金资助:
    兵团科技攻关项目(2017DB005-01)和国家重点研发计划项目(2017YFC1500902)资助

Unmanned aerial vehicle image face recognition based on improved YOLOv3 and Facenet

GAO Jinfeng1,2, CHEN Yu1, WEI Yongming1, LI Jiannan1,2   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-01-15 Revised:2021-03-12 Published:2021-05-31

摘要: 基于无人机影像的高精度人脸识别在应急救援、嫌疑人员跟踪等场景中发挥着重要作用。深度学习卷积神经网络以其较高的精度和较少的人为干扰被广泛应用于目标检测识别领域,能很好地应用于无人机影像人脸识别任务中。探究在无人机嫌疑人员识别应用场景下利用卷积网络进行人脸高精度识别,用改进后的YOLOv3(you only look once)进行无人机影像的人脸检测,将得到的预测框对齐后输入到经典的Facenet人脸识别网络中进行目标身份的判定。实验对比了改进后的YOLOv3、原始YOLOv3和MTCNN(multi-task convolutional neural network)的检测效果以及结合Facenet进行人脸识别的效果。结果表明:1)改进后的YOLOv3相对于原始YOLOv3不仅精度和召回率得到提升,而且模型参数量有所减少,无人机影像的漏检和错检现象也轻于原始YOLOv3;此外,改进后的YOLOv3相对MTCNN的AP(average precision)提升9.49%,检测速度也约是MTCNN的3倍;2)改进后的YOLOv3+Facenet相对于原始YOLOv3+Facenet及MTCNN+Facenet对人脸的区分能力更强,精度更高,对遮挡以及模糊的鲁棒性也更强。

关键词: YOLOv3, Facenet, 人脸识别, 无人机

Abstract: High precision face recognition based on unmanned aerial vehicle (UAV) images plays an important role in emergency rescue, suspect tracking, and other scenes. Deep learning convolutional neural network is widely used in the field of target detection and recognition because of its high accuracy and less human interference, which can be well applied to UAV image face recognition tasks. This paper explores the use of convolution networks for high-precision face recognition in UAV application scenarios, uses the improved YOLOv3(you only look once) for face detection of UAV images, and inputs the prediction boxes into the classic Facenet network to determine the target identity. Through experiments, this paper compares the detection effect of the improved YOLOv3, the original YOLOv3, and the MTCNN (multi-task convolutional neural network), and also compares the face recognition effect of the three models combined with Facenet. The experimental results show that: 1) compared with the original YOLOv3, the improved YOLOv3 improves the accuracy and recall rate, reduces the number of model parameters; besides, the phenomenon of missing and wrong detection of the improved YOLOv3 for UAV image is less than that of the original YOLOv3; moreover, the AP (average precision) of improved YOLOv3 is 9.49% higher than that of MTCNN, and the detection speed is about 3 times of MTCNN; 2) compared with the original YOLOv3+Facenet and MTCNN+Facenet, the improved YOLOv3+Facenet has stronger ability to distinguish faces and higher accuracy, and has stronger robustness to occlusion and blur.

Key words: YOLOv3, Facenet, face recognition, unmanned aerial vehicle

中图分类号: