[1] 李均力,陈曦,包安明.2003—2009年中亚地区湖泊水位变化的时空特征[J]. 地理学报,2011,66(9):1219-1229. DOI: 10.11821/XB201109007. [2] 曹国亮,李天辰,陆垂裕, 等.干旱区季节性湖泊面积动态变化及蒸发量:以艾丁湖为例[J].干旱区研究, 2020,37(5): 1095-1104. DOI: 10.13866/j.azr.2020.05.01. [3] 宁文晓,刘旭阳,王振亭.巴丹吉林沙漠气温和降水特征及空间分层异质性[J].中国科学院大学学报,2021,38(1): 103-113. DOI: 10.7523/j.issn.2095-6134.2021.01.013. [4] 杨腾腾,吴挺峰,嵇晓燕, 等.强人类活动下半干旱地区湖泊水资源损失过程重建:以岱海为例[J]. 湖泊科学,2022,34(6): 2105-2121. DOI: 10.18307/2022.0623. [5] Zhang P, Jeong J H, Yoon J H, et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point[J]. Science,2020,370(6520): 1095-1099. DOI: 10. 1126/science.abb3368. [6] 冯起,常宗强,席海洋, 等.基于碳氮循环的中蒙荒漠生态脆弱区生态系统对全球变化响应研究[J]. 地球科学进展,2022,37(11): 1101-1114. DOI: 10.11867/j.issn.1001-8166.2022.084. [7] 高彦哲,阿拉腾图娅,昙娜, 等.2000—2020年蒙古高原湖泊变化及其影响因素分析[J].干旱区地理, 2023,46(2): 191-200. DOI: 10.12118/j.issn.1000-6060. 2022.424. [8] Kang S, Hong S Y. Assessing seasonal and inter-annual variations of lake surface areas in Mongolia during 2000-2011 using minimum composite MODIS NDVI[J]. Plos One,2016,11(3): e0151395. DOI: 10.1371/journal.pone.0151395. [9] Kang S, Lee G, Togtokh C, et al. Characterizing regional precipitation-driven lake area change in Mongolia[J]. Journal of Arid Land,2015,7(2): 146-158. DOI: 10.1007/ s40333-014-0081-x. [10] O' Reilly C, Sharma S, Gray D K, et al. Rapid and highly variable warming of lake surface waters around the globe[J]. Geophysical Research Letters, 2015,42: 10773-10781. DOI: 10.1002/2015GL066235. [11] Zhou Y, Dong J W, Xiao X M, et al. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine[J]. Science of the Total Environment, 2019,689: 366-380. DOI: 10.1016/j.scitotenv.2019.06.341. [12] Tao S L, Fang J Y, Zhao X, et al. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(7): 2281-2286. DOI: 10.1073/pnas.1411748112. [13] Zhang Z Y, Cao R, Mamat Z, et al. A study of synchronous measurement of liable phosphorous and iron based on ZrO-Chelex (DGT) in the sediment of the Chaiwopu Lake, Xinjiang, Northwest China[J]. Environmental Science and Pollution Research, 2020, 27(13): 15057-15067. DOI: 10.1007/s11356-020-07701-y. [14] Jiang L, Yao Z, Huang H Q. Climate variability and change on the Mongolian Plateau: historical variation and future predictions[J]. Climate Research, 2016,67(1): 1-14. DOI: 10.3354/cr01347. [15] Nyamtseren M, Feng Q, Deo R. A comparative study of temperature and precipitation-based aridity indices and their trends in Mongolia[J]. International Journal of Environmental Research, 2018, 12(6): 887-899. DOI: 10. 1007/s41742-018-0143-6. [16] Luo R, Yuan Q Q, Yue L W, et al. Monitoring recent lake variations under climate change around the Altai Mountains using multimission satellite data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,14: 1374-1388. DOI: 10.1109/ JSTARS.2020.3035872. [17] Pan C G, Kamp U, Munkhjargal M, et al. An estimated contribution of glacier runoff to Mongolia' s upper khovd river basin in the Altai Mountains[J]. Mountain Research and Development, 2019,39(2): 12-20. DOI: 10.1659/mrd-journal-d-18-00059.1. [18] Yang H J, Lee E H, Do N Y, et al. Seasonal and inter-annual variations of lake surface area of orog lake in Gobi, Mongolia during 2000-2010[J]. Korean Journal of Remote Sensing, 2012, 28(3): 267-276. DOI: 10.7780/ kjrs.2012.28.3.267. [19] McIntyre N, Bulovic N, Cane I, et al. A multi-disciplinary approach to understanding the impacts of mines on traditional uses of water in Northern Mongolia[J]. Science of the Total Environment, 2016,557/558: 404-414. DOI: 10.1016/j.scitotenv.2016.03.092. [20] Hilker T, Natsagdorj E, Waring R H, et al. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing[J]. Global Change Biology, 2014,20(2): 418-428. DOI: 10.1111/gcb.12365. [21] Tsutomu K, Gombo D. Recent glacier variations in Mongolia[J]. Annals of Glaciology, 2007, 46: 185-188.DOI: 10.3189/172756407782871675. [22] Ishikawa M, Avtar R, Mo S X. Using interferometric synthetic aperture rader (InSAR) analysis to detect ground deformation related to irreversibly changing ground ice, Mongolia[J]. Land Degradation & Development, 2023, 34 (9): 2707-2719. DOI: 10.1002/ldr.4644. [23] Smith L C, Sheng Y, MacDonald G M, et al. Disappearing arctic lakes[J]. Science, 2005,308(5727): 1429. DOI: 10.1126/science.1108142. [24] Song C Q, Huang B, Richards K, et al. Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes?[J]. Water Resources Research,2014,50(4): 3170-3186. DOI: 10.1002/ 2013wr014724. [25] Gronewold A D, Stow C A. Water loss from the great lakes[J]. Science, 2014,343(6175): 1084-1085.DOI: 10. 1126/science.1249978. [26] Zhang G Q, Yao T D, Xie H J, et al. Increased mass over the Tibetan Plateau: from lakes or glaciers?[J]. Geophysical Research Letters, 2013,40(10): 2125-2130. DOI: 10.1002/grl.50462. [27] Huang W J, Duan W L, Chen Y N. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes[J]. Science of the Total Environment, 2021,784: 147193. DOI: 10.1016/j. scitotenv.2021.147193. [28] Feng L, Hu C M, Chen X L, et al. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010[J]. Remote Sensing of Environment, 2012,121: 80-92. DOI: 10.1016/j.rse.2012.01. 014. [29] Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and wetlands[J]. Journal of Hydrology, 2004, 296(1/2/3/4): 1-22. DOI: 10.1016/j. jhydrol.2004.03.028. [30] Prigent C, Papa F, Aires F, et al. Changes in land surface water dynamics since the 1990s and relation to population pressure[J]. Geophysical Research Letters, 2012, 39(8). DOI: 10.1029/2012gl051276. [31] Heimhuber V, Tulbure M G, Broich M. Modeling 25 years of spatio-temporal surface water and inundation dynamics on large river basin scale using time series of Earth observation data[J]. Hydrology and Earth System Sciences, 2016, 20(6): 2227-2250.DOI: 10.5194/hess-20-2227-2016. [32] Tulbure M G, Broich M, Stehman S V, et al. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region[J]. Remote Sensing of Environment, 2016,178: 142-157. DOI: 10.1016/j.rse.2016.02.034. [33] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633): 418-422. DOI: 10. 1038/nature20584. [34] Feng M, Sexton J O, Channan S, et al. A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic-spectral classification algorithm[J]. International Journal of Digital Earth, 2016, 9(2): 113-133. DOI: 10.1080/17538947.2015.1026420. [35] Orkhonselenge A, Uuganzaya M, Davaagatan T. Lakes of Mongolia: geomorphology, geochemistry and paleoclimatology[M]. Cham, Switzerland: Springer, 2022. DOI: 10.1007/978-3-030-99120-3. [36] Fang L, Tao S, Zhu J, et al. Impacts of climate change and irrigation on lakes in arid Northwest China[J]. Journal of Arid environments, 2018, 154: 34-39. DOI: 10.1016/j.jaridenv.2018.03.008. [37] 祁昌贤,任燕,彭海月,等.基于GEE云平台的三江源湖泊面积提取及动态变化[J].长江科学院院报,2023,40(7):179-185,190. DOI:10.11988/ ckyyb.20220806. [38] 周岩. 基于遥感云计算的典型农牧区水资源变化监测及归因分析[D]. 北京:中国地质大学(北京),2021. DOI: 10.27493/d.cnki.gzdzy.2021.000041. [39] Wang X X, Xiao X M, Zou Z H, et al. Gainers and losers of surface and terrestrial water resources in China during 1989-2016[J]. Nature Communications,2020, 11(1):3471. DOI: 10.1038/s41467-020-17103-w. [40] Deng Y, Jiang W G, Tang Z H, et al. Long-term changes of open-surface water bodies in the Yangtze River Basin based on the google earth engine cloud platform[J]. Remote Sensing, 2019,11(19): 2213. DOI: 10.3390/ rs11192213. [41] 陈伟,张秀霞,党星海,等.基于CNN-OBIA的黄河源区水体提取及时空变化[J].人民长江,2024,55(4):133-141. DOI:10.16232/j.cnki.1001-4179.2024.04.018. [42] 郝金虎,韦玮,李胜男,等.基于GEE平台的京津冀长时序水体时空格局及其影响因素[J].生态环境学报,2023,32(3):556-566. DOI:10.16258/j.cnki.1674-5906.2023.03.013. [43] Hessl A E, Anchukaitis K J, Jelsema C, et al. Past and future drought in Mongolia[J]. Science Advances, 2018, 4(3): e1701832. DOI: 10.1126/sciadv.1701832. [44] Fernández-Giménez M E, Venable N H, Angerer J, et al. Exploring linked ecological and cultural tipping points in Mongolia[J]. Anthropocene, 2017, 17: 46-69. DOI: 10.1016/j.ancene.2017.01.003. [45] Cao X J, Gao Q Z, Hasbagan G, et al. Influence of climatic factors on variation in the Normalised Difference Vegetation Index in Mongolian Plateau grasslands[J]. The Rangeland Journal, 2018,40(2): 91. DOI: 10.1071/rj16073. [46] 高彦哲.2000-2020年蒙古高原湖泊面积变化分析[D].呼和浩特:内蒙古师范大学,2023.DOI:10.27230/d.cnki.gnmsu.2023.000731. [47] Yembuu, B. The physical geography of Mongolia[M]. Cham: Springer, 2021. DOI:10.1007/978-3-030-61434-8. [48] Sasaki T, Okayasu T, Jamsran U, et al. Threshold changes in vegetation along a grazing gradient in Mongolian rangelands[J]. Journal of Ecology, 2008,96(1): 145-154. DOI: 10.1111/j.1365-2745.2007.01315.x. [49] Blanc E, Strzepek K, Schlosser A, et al. Modeling U.S. water resources under climate change[J]. Earth’s Future, 2014, 2(4): 197-224. DOI: 10.1002/2013ef000214. |