欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

黏土基泡沫聚合土路基材料的保温性能及力学特性研究*

赵阳1,2, 卢正1,2, 刘杰3, 张荣1, 颜廷舟4, 唐楚轩1, 李剑4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071;
    2. 中国科学院武汉岩土力学研究所 环境岩土工程湖北省重点实验室,武汉 430071;
    3. 新疆交通规划勘察设计研究院有限公司,乌鲁木齐 830006;
    4. 湖北省交通规划设计院股份有限公司,武汉 430051
  • 收稿日期:2024-01-04 修回日期:2024-06-04 发布日期:2024-06-24
  • 通讯作者: E-mail:zhaoyang@mail.whrsm.ac.cn
  • 基金资助:
    * 国家自然科学基金(42077262, 42077261)、湖北省创新群体项目(2023AFA019)、湖北省交通运输厅科技项目(2020-186-1-9)、2022 年度交通运输行业科技项目(2022-ZD-017, 2022-ZD-018)和新疆交通设计院科研基金项目(KY2022042504, KY2022042501, KY2023081601)资助

Study on thermal insulation performance and mechanical characteristics of clay-based foamed polymeric soil subgrade materials

ZHAO Yang1,2,3, LU Zheng1,2, LIU Jie3, ZHANG Rong1, YAN Ting-zhou4, TANG Chu-xuan1, LI Jian4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
    2. Hubei Key Laboratory of Geo-Environmental Engineering, Wuhan 430071, China;
    3. Xinjiang Transportation Planning Survey and Design Institute Co., Ltd., Urumqi 830006, China;
    4. Hubei Communications Planning and Design Institute Co., Ltd., Wuhan 430051, China
  • Received:2024-01-04 Revised:2024-06-04 Published:2024-06-24

摘要: 利用公路沿线工程弃土制作泡沫聚合土,用作季冻区路基防寒保温层,在实现资源全面利用化的同时亦可以减轻路基冻害。以乌鲁木齐绕城高速沿线的挖方弃土为基础,结合水泥和泡沫,共同研发了具有多孔保温特性的泡沫聚合土。系统探讨了湿密度、土壤掺量和水料比对泡沫聚合土导热性能、无侧限抗压强度和刚度的影响,并建立了孔隙结构与宏观性能之间的内在联系。研究结果表明,当泡沫聚合土的密度从600 kg/m3提升至1200 kg/m3时,其导热系数约增长1倍,强度约增强3.95倍,模量更是增长约10.5倍。相较于传统的路基土,泡沫聚合土的导热系数显著降低了52%~96.4%。进一步对孔隙结构进行分析,发现随着单位体积内泡沫聚合土孔径的减小,骨架占比相应增加,气孔体积则有所减少。这种微观结构的变化在宏观性能上表现为保温性能的提升(即导热系数的降低)以及力学性能的显著增强(包括强度和刚度的提升)。泡沫聚合土不仅展现出了较好的保温性能,还具备了较强的力学特性,为季冻区路基的防寒保温层提供了合适的解决方案。

Abstract: Using excavated soil from highway construction sites to produce foamed polymeric soil, employed as a thermal insulation layer for seasonally frozen subgrades, not only achieves comprehensive resource utilization but also mitigates frost damage to the subgrades. Based on the excavated soil along the Urumqi Ring Expressway, combined with cement and foam, the foamed polymeric soil with porous insulation properties was developed. The influences of wet density, soil admixture, and water-cement ratio on the thermal conductivity, unconfined compressive strength, and stiffness of foamed polymeric soil were systematically investigated, establishing an intrinsic connection between pore structure and macroscopic performance. The research findings indicate that when the density of foamed polymeric soil increases from 600 kg/m³ to 1200 kg/m³, its thermal conductivity approximately doubles, strength increases by about 3.95 times, and modulus increases by approximately 10.5 times. Compared to traditional subgrade soil, the thermal conductivity of foamed polymeric soil is significantly reduced by 52%~96.4%. Further analysis of the pore structure reveals that as the pore size of foamed polymeric soil within a unit volume decreases, the proportion of the skeleton increases correspondingly while the volume of air pores decreases. This microstructural change manifests as improved thermal insulation performance (i.e., reduced thermal conductivity) and significant enhancement in mechanical properties (including strength and stiffness) at the macroscopic level. Foamed polymeric soil not only demonstrates better thermal insulation performance but also exhibits strong mechanical characteristics, providing a suitable solution for the thermal insulation layer of seasonally frozen subgrades.

Key words: foamed polymeric soil, thermal conductivity, mechanical properties, correlation between macro and micro level

中图分类号: