[1] Lu Z, Xian S H, Yao H L, et al.Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil[J]. Cold Regions Science and Technology, 2019, 157: 42-52. DOI: 10.1016/j.coldregions.2018.09.009. [2] Lu Z, She J B, Wu X W, et al.Cumulative strain characteristics of compacted soil under effect of freeze-thaw cycles with water supply[J]. Transportation Geotechnics, 2019, 21: 100291. DOI: 10.1016/j.trgeo.2019.100291. [3] Zhao Y, Lu Z, Yao H L, et al.Experimental study of dynamic resilient modulus of subgrade soils under coupling of freeze-thaw cycles and dynamic load[J]. Journal of Central South University, 2020, 27(7): 2043-2053. DOI: 10.1007/s11771-020-4429-4. [4] 杨正宏, 李婷婷, 于龙. 低密度泡沫混凝土导热系数模型研究[J]. 建筑材料学报, 2020, 23(2): 322-327. DOI: 10.3969/j.issn.1007-9629.2020.02.013. [5] Zhang J F, Yan Y, Hu Z H.Preparation and characterization of foamed concrete with Ti-extracted residues and red gypsum[J]. Construction and Building Materials, 2018, 171: 109-119. DOI: 10.1016/j.conbuildmat.2018.03.072. [6] Samson G, Phelipot-Mardelé A, Lanos C.Thermal and mechanical properties of gypsum-cement foam concrete: Effects of surfactant[J]. European Journal of Environmental and Civil Engineering, 2016, 21: 1502-1521. DOI: 10.1080/19648189.2016.1177601. [7] Ouyang X P, Guo Y X, Qiu X Q.The feasibility of synthetic surfactant as an air entraining agent for the cement matrix[J]. Construction and Building Materials, 2008, 22(8): 1774-1779. DOI: 10.1016/j.conbuildmat.2007.05.002. [8] Xiong Y L, Zhu Y, Chen C, et al.Effect of nano-alumina modified foaming agents on properties of foamed concrete[J]. Construction and Building Materials, 2021, 267: 121045. DOI: 10.1016/j.conbuildmat.2020.121045. [9] Ranjani G S, Ramamurthy K.Behaviour of foam concrete under sulphate environments[J]. Cement and Concrete Composites, 2012, 34(7): 825-834. DOI: 10.1016/j.cemconcomp.2012.03.007. [10] Kim Y T, Ahn J, Han W J, et al.Experimental evaluation of strength characteristics of stabilized dredged soil[J]. Journal of Materials in Civil Engineering, 2010, 22(5): 539-544. DOI: /10.1061/(ASCE)MT.1943-5533.0000052. [11] Lim S K, Tan C S, Zhao X, et al.Strength and toughness of lightweight foamed concrete with different sand grading[J]. KSCE Journal of Civil Engineering, 2015, 19(7): 2191-2197. DOI: 10.1007/s12205-014-0097-y. [12] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土单轴抗压力学特性及唯象本构模型[J]. 应用基础与工程科学学报, 2023, 31(3): 675-689. DOI: 10.16058/j.issn.1005-0930.2023.03.012. [13] 欧孝夺, 彭远胜, 莫鹏, 等. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(S1): 241-245. [14] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 124-129. DOI: 10.11896/cldb.21030274. [15] Kearsley E P, Wainwright P J.The effect of high fly ash content on the compressive strength of foamed concrete[J]. Cement and Concrete Research, 2001, 31(1): 105-112. DOI: 10.1016/S0008-8846(00)00430-0. [16] Jones M R, McCarthy A. Heat of hydration in foamed concrete: Effect of mix constituents and plastic density[J]. Cement and Concrete Research, 2006, 36(6): 1032-1041. DOI: 10.1016/j.cemconres.2006.01.011. [17] Lim S K, Tan C S, Li B, et al.Utilizing high volumes quarry wastes in the production of lightweight foamed concrete[J]. Construction and Building Materials, 2017, 151: 441-448. DOI: 10.1016/j.conbuildmat.2017.06.091. [18] Jones M R, Ozlutas K, Zheng L.Stability and instability of foamed concrete[J]. Magazine of Concrete Research, 2016, 68: 542-549. DOI: 10.1680/MACR.15.00097. [19] Kunhanandan Nambiar E K, Ramamurthy K. Influence of filler type on the properties of foam concrete[J]. Cement and Concrete Composites, 2006, 28(5): 475-480. DOI: 10.1016/j.cemconcomp.2005.12.001. [20] Spyridopoulos M T, Simons S J R. Effect of natural organic matter on the stability of a liquid film between two colliding bubbles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 235(1/2/3): 25-34. DOI: 10.1016/j.colsurfa.2003.01.001. [21] Raj A, Sathyan D, Mini K M.Physical and functional characteristics of foam concrete: A review[J]. Construction and Building Materials, 2019, 221: 787-799. DOI: 10.1016/j.conbuildmat.2019.06.052. [22] Ramamurthy K, Kunhanandan Nambiar E K, Ranjani G S. A classification of studies on properties of foam concrete[J]. Cement and Concrete Composites, 2009, 31(6): 388-396. DOI: 10.1016/j.cemconcomp.2009.04.006. [23] Kunhanandan Nambiar E K, Ramamurthy K. Models relating mixture composition to the density and strength of foam concrete using response surface methodology[J]. Cement and Concrete Composites, 2006, 28(9): 752-760. DOI: 10.1016/j.cemconcomp.2006.06.001. [24] Horpibulsuk S, Suddeepong A, Chinkulkijniwat A, et al.Strength and compressibility of lightweight cemented clays[J]. Applied Clay Science, 2012, 69: 11-21. DOI: 10.1016/j.clay.2012.08.006. [25] Cong M, Bing C.Properties of a foamed concrete with soil as filler[J]. Construction and Building Materials, 2015, 76: 61-69. DOI: 10.1016/j.conbuildmat.2014.11.066. [26] 赵文辉. 高速铁路泡沫轻质混凝土路基结构性能及施工技术研究[D]. 成都: 西南交通大学, 2018. [27] 王才进, 蔡国军, 武猛, 等. 基于人工智能算法预测土体导热系数[J]. 岩土工程学报, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016. [28] 张涛, 杨玉玲, 张家铭, 等. 基于相似性原则的橡胶颗粒-砂混合物热导率理论模型[J]. 岩土工程学报, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333. [29] 徐洁, 胡海涛, 郑植. 压实度和含水率对非饱和土导热系数的影响[J]. 岩土工程学报, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048. [30] 李猛, 黄寅生, 张少波, 等. 泡沫混凝土的研究进展及展望[J]. 材料导报, 2016, 30(S1): 402-405. [31] 陈兵, 胡华洁, 刘宁. 生土泡沫混凝土试验研究[J]. 建筑材料学报, 2015, 18(1): 1-6. DOI: 10.3969/j.issn.1007-9629.2015.01.001. |