欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

基于一种改进的多目标进化算法求解多目标航空公司机组配对问题

李聪, 姜志鹏, 杨文国   

  1. 中国科学院大学数学科学学院,北京,100049
  • 收稿日期:2024-01-24 修回日期:2024-06-12 发布日期:2024-06-24

An improved multi-objective evolutionary algorithm for the multi-objective airline crew pairing problem*

LI Cong, JIANG Zhipeng, YANG Wenguo   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
  • Received:2024-01-24 Revised:2024-06-12 Published:2024-06-24
  • Contact: E-mail: jiangzhipeng@ucas.ac.cn
  • Supported by:
    *Supported by National Natural Science Foundation of China (12071459)

摘要: 具有多个目标的航空公司机组配对问题目的是寻找一个可行的任务环子集,使得寻找到的可行任务环子集覆盖所有航班,并且使得每个目标函数最小化。对于该问题,本文提出了两个不同的数学模型,其中一个是包含逻辑关系的模型,另一个是整数规划模型。为了解决该多目标问题,本文提出了一种改进的多目标进化算法,该算法是一种非支配排序遗传算法,它使用每个解对应的目标向量和自适应评估向量之间的距离区分种群个体。本文提出的这个算法主要使用自适应评估向量和帕累托方向作为搜索方向,以获得帕累托最优解。为了得到更好可行的帕累托解,本文还使用一种修复策略和一种局部优化策略。最后,在实验结果中,本文指出提出的改进的多目标进化算法优于传统的非支配排序遗传算法II和另一种多目标遗传算法。

关键词: 航空公司机组配对, 多目标优化, 帕累托最优解

Abstract: The multi-objective airline crew pairing problem finds a subset of feasible pairings so that all flights are covered and each objective function is minimum. For the problem, we propose two mathematical models: a novel mathematical model that contains logical relationships and an integer programming model that is based on all feasible pairings enumerated by a depth-first search method. To solve the problem, we propose an improved multi-objective evolutionary algorithm, where this algorithm is a nondominated sorting genetic algorithm with the distance between the objective vector corresponding to each solution and an adaptive evaluation vector. The proposed algorithm uses the direction of the adaptive evaluation vector and the Pareto orientation for guidance to derive Pareto-optimal solutions. We also uses a repairing strategy and a local optimization strategy for deriving feasible and better solutions. For this problem, in our experimental results, the performance of the proposed algorithm is superior to that of the conventional nondominated sorting genetic algorithm II and another multi-objective genetic algorithm, respectively.

Key words: Airline Crew Pairing, Multi-objective Optimization, Pareto-optimal Solutions

中图分类号: