欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

基于度量元学习的小样本绝缘子缺陷图像分类*

王宇聪, 李勇, 叶振勤, 胡博宇   

  1. 广西大学电气工程学院 广西电力系统最优化与节能技术重点实验室,南宁 530004
  • 收稿日期:2024-04-19 修回日期:2024-08-22 发布日期:2024-09-24
  • 通讯作者: E-mail:yongli@gxu.edu.cn
  • 基金资助:
    *广西科技基地和人才专项(桂科AD22080043)、智能光电系统感知及应用四川省高校重点实验室开放课题(ZNGD2206)和广西研究生教育创新计划资助项目(YCSW2024034)资助

Classification of insulator defect images with small samples based on meta learning and metric learning

WANG Yucong, LI Yong, YE Zhenqin, HU Boyu   

  1. Guangxi Key Laboratory of Power System Optimization and Energy Technology, School of Electrical Engineering, Guangxi University, Nanning 530004, China
  • Received:2024-04-19 Revised:2024-08-22 Published:2024-09-24

摘要: 针对电力巡检中绝缘子缺陷样本稀缺导致缺陷识别准确率较低的问题,提出了一种结合Fine-tuning训练策略和cosine similarity softmax分类器(CSM)的识别方法,将基于度量元学习的小样本方法应用于绝缘子缺陷分类任务。该方法主要分为2个步骤:首先,使用大型数据集对神经网络进行预训练。接着,采用Fine-tuning训练策略和CSM分类器,结合元学习和度量学习对模型进行优化,将预训练和元学习阶段中学到的相关知识迁移到绝缘子缺陷图像分类领域。通过消融实验,验证了加入Fine-tuning训练策略后,召回率提高了0.5%以上,精确率提高了0.53%以上;加入CSM后,召回率提高了0.38%以上,精确率提高了0.4%以上。通过与其他主流小样本学习方法对比,召回率和精确率上分别提高了0.51%以上和0.47%以上。实验结果表明,提出的方法在准确性、鲁棒性和泛化能力方面表现出较高的性能,证实了该方法在电力巡检绝缘子缺陷图像分类任务中的有效性。

关键词: 图像分类, 电力巡检, Fine-tuning训练策略, 余弦相似度, 小样本学习, 绝缘子缺陷

Abstract: To address the issue of low defect recognition accuracy due to the scarcity of insulator defect samples in power inspection, we propose a recognition method that combines a Fine-tuning training strategy with a Cosine Similarity Softmax (CSM) classifier. This method applies few-shot learning based on metric learning to the task of insulator defect classification. The approach consists of two main steps: first, pre-training the neural network on a large dataset; and second, using the Fine-tuning training strategy and CSM classifier to optimize the model, integrating meta-learning and metric learning to transfer the relevant knowledge acquired during the pre-training and meta-learning phases to the domain of insulator defect image classification. Ablation experiments demonstrate that incorporating the Fine-tuning training strategy increases recall by more than 0.5% and precision by more than 0.53%. Adding the CSM further improves recall by more than 0.38% and precision by more than 0.4%. Compared to other mainstream few-shot learning methods, our method shows improvements in recall and precision by over 0.51% and 0.47%, respectively. Experimental results indicate that the proposed method exhibits high performance in terms of accuracy, robustness, and generalization capability, confirming its effectiveness in the task of insulator defect image classification for power inspection.

Key words: image classification, power inspection, Fine-tuning training strategy, cosine similarity, few-shot learning, insulator defect

中图分类号: