[1] Zhang Q, Sun Y M, Xu W, et al.Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efffciently[J]. Adv. Mater. 2014, 26: 6829-6851. DOI: 10.1002/adma.201305371.
[2] Hu Y J, Shi H, Song H J, et al.Effects of a proton scavenger on the thermoelectric performance of free-standing polythiophene and its derivative films[J]. Synth. Met. 2013, 181: 23-26. DOI: 10.1016/j.synthmet.2013.08.006.
[3] Hao L P, Kang J Y, Shi J L, et al.Enhanced thermoelectric performance of poly(3-substituted thiophene)/single-walled carbon nanotube composites via polar side chain modification[J]. Compos. Sci. Technol. 2020, 199: 108359. DOI: 10.1016/j.compscitech.2020.108359.
[4] Lee Y H, Oh J W, Lee S-S, et al.Highly ordered nanoconfinement effect from evaporation-induced self-assembly of block copolymers on in situ polymerized PEDOT:Tos[J]. ACS Macro Lett. 2017, 6(4): 386-392. DOI: 10.1021/acsmacrolett.7b00137.
[5] Wu J S, Sun Y M, Xu W, et al.Investigating thermoelectric properties of doped polyaniline nanowires[J]. Synth. Met. 2014, 189: 177-182. DOI: 10.1016/j.synthmet.2014.01.007.
[6] Liang L R, Chen G M, Guo C-Y.Polypyrrole nanostructures and their thermoelectric performance[J]. Mater. Chem. Front. 2017, 1(2): 380-386. DOI: 10.1039/c6qm00061d.
[7] Yao H Y, Fan Z, Cheng H L, et al.Recent development of thermoelectric polymers and composites[J]. Macromol. Rapid Commun. 2018, 39: 1700727. DOI: 10.1002/marc.201700727.
[8] Park K T, Lee T M, Ko Y P, et al.High-performance thermoelectric fabric based on a stitched carbon nanotube fiber[J]. ACS Appl. Mater. Interfaces 2021, 13(5): 6257-6264. DOI: 10.1021/acsami.0c20252.
[9] Shalini V, Navaneethan M, Harish S, et al.Design and fabrication of PANI/GO nanocomposite for enhanced room-temperature thermoelectric application[J]. Appl. Surf. Sci. 2019, 493: 1350-1360. DOI: 10.1016/j.apsusc.2019.06.249.
[10] Rathi V, Singh K, Parmar K P S, et al. Boosting thermoelectric performance of PEDOT:PSS/Bi2Te3 hybrid films via structural and interfacial engineering[J]. Org. Electron. 2024, 133: 107103. DOI: 10.1016/j.orgel.2024.107103.
[11] Ju H, Park D B, Kim J H.Thermoelectric enhancement in multilayer thin-films of tin chalcogenide nanosheets/conductive polymers[J]. Nanoscale 2019, 11(34): 16114-16121. DOI: 10.1039/c9nr04712c.
[12] Xu W J, Zhao Y J, Wang H R, et al.Postsynthetic-modified PANI/MOF composites with tunable thermoelectric and photoelectric properties[J]. Chem. Eur. J. 2021, 27(15): 5011-5018. DOI: 10.1002/chem.202005474.
[13] Guan X, Feng W, Wang X Z, et al.Signiffcant enhancement in the Seebeck coefficient and power factor of p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) through the incorporation of n-type MXene[J]. ACS Appl. Mater. Interfaces 2020, 12(11): 13013-13020. DOI: 10.1021/acsami.9b21185.
[14] Novak T G, Shin H S, Kim J M, et al.Low-cost black phosphorus nanoffllers for improved thermoelectric performance in PEDOT:PSS composite films[J]. ACS Appl. Mater. Interfaces 2018, 10(21): 17957-17962. DOI: 10.1021/acsami.8b03982.
[15] He J, Tritt T M. Advances in thermoelectric materials research: Looking back and moving forward[J]. Science2017, 357: eaak9997. DOI: 10.1126/science.aak9997.
[16] Russ B, Glaudell A, Urban J J, et al.Organic thermoelectric materials for energy harvesting and temperature control[J]. Nat. Rev. Mater. 2016, 1: 16050. DOI: 10.1038/natrevmats.2016.50.
[17] Fan Z, Du D H, Guan X, et al.Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface[J]. Nano Energy 2018, 51: 481-488. DOI: 10.1016/j.nanoen.2018.07.002.
[18] Liang L R, Gao C Y, Chen G M, et al.Large-area, stretchable, super flexible and mechanically-stable thermoelectric films of polymer/carbon nanotube composites[J]. J. Mater. Chem. C 2016, 4(3): 526-532. DOI: 10.1039/c5tc03768a.
[19] Wang L M, Yao Q, Xiao J X, et al.Engineered molecular chain ordering in single-walled carbon nanotubes/polyaniline composite films for high-performance organic thermoelectric materials[J]. Chen, Chem. Asian J. 2016, 11(12): 1804-1810. DOI: 10.1002/asia.201600212.
[20] Wu X, Luo Q Y, Yin S X, et al.Organic/inorganic thermoelectric composites electrochemical synthesis, properties, and applications[J]. J. Mater. Sci. 2021, 56(35): 19311-19328. DOI: 10.1007/s10853-021-06512-x.
[21] Ibrahim N I, Wasfi A S.A comparative study of polyaniline/MWCNT with polyaniline/SWCNT nanocomposite films synthesized by microwave plasma polymerization[J]. Synth. Met. 2019, 250: 49-54. DOI: 10.1016/j.synthmet.2019.02.007.
[22] Culebras M, Cho C Y, Krecker M, et al.High thermoelectric power factor organic thin films through combination of nanotube multilayer assembly and electrochemical polymerization[J]. ACS Appl. Mater. Interfaces 2017, 9(7): 6306-6313. DOI: 10.1021/acsami.6b15327.
[23] Nandihalli N, Liu C-J, Mori T.Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics[J]. Nano Energy 2020, 78: 105186. DOI: 10.1016/j.nanoen.2020.105186.
[24] Huo B C, Guo C-Y.Advances in thermoelectric composites consisting of conductive polymers and fillers with different architectures[J]. Molecules 2022, 27: 6932. DOI: 10.3390/molecules27206932.
[25] Song E W, Liu P Y, Lv Y F, et al.Conductive polymer-based thermoelectric composites: Preparation, properties, and applications[J]. J. Compos. Sci. 2024, 8(8): 308. DOI: 10.3390/jcs8080308.
[26] Zhu M Y, He B Q, Zhang K, et al.Recent progress of poly(3-hexylthiophene)-based materials for thermoelectric applications[J]. Mater. Chem. Front. 2024, 8(13): 2454-2492. DOI: 10.1039/d4qm00213j.
[27] Fan W S, Guo C-Y, Chen G M.Flexible films of poly(3,4-ethylenedioxythiophene)/carbon nanotube thermoelectric composites prepared by dynamic 3-phase interfacial electropolymerization and subsequent physical mixing[J]. J. Mater. Chem. A 2018, 6(26): 12275-12280. DOI: 10.1039/c8ta04838j.
[28] Fan W S, Liang L R, Zhang B B, et al.PEDOT thermoelectric composites with excellent power factors prepared by 3-phase interfacial electropolymerization and carbon nanotube chemical doping[J]. J. Mater. Chem. A 2019, 7(22): 13687-13694. DOI: 10.1039/c9ta03153g.
[29] Yin S X, Wu X, Wang R Y, et al.Composite aerogel of electropolymerized polyaniline and SWCNTs with high thermoelectric performance[J]. Macromol. Mater. Eng. 2022, 307(8): 2200094. DOI: 10.1002/mame.202200094.
[30] Xiong J H, Jiang F X, Shi H, et al.Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT:PSS nanofilm with hydrazine treatment[J]. ACS Appl. Mater. Interfaces 2015, 7(27): 14917-14925. DOI: 10.1021/acsami.5b03692.
[31] Bae E J, Kang Y H, Jang K-S, et al.Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment[J]. Sci. Rep. 2016, 6: 18805. DOI: 10.1038/srep18805.
[32] Gonzalez-Juarez M, Isaacs M A, Bradshaw D, et al.Enhanced thermoelectric properties of a semiconducting two dimensional metal-organic framework via iodine loading[J]. ACS Appl. Mater. Interfaces 2023, 15(4): 5478-5486. DOI: 10.1021/acsami.2c20770.
[33] Li K C, Wang J, Wang H.Recent advances of 2D conductive metal-organic frameworks in thermoelectrics[J]. J. Mater. Chem. A 2024, 12(24): 14245-14267. DOI: 10.1039/d4ta01820f.
[34] 江润璐, 吴鑫, 郭昊骋, 等. UiO-67基导电复合材料的制备及其热电性能研究[J]. 无机材料学报 2023, 38(11): 1338-1344. DOI: 10.15541/jim20230197.
[35] Ebrahim A, Ghali M, El-Moneim A A. Microporous Zr-metal-organic frameworks based-nanocomposites for thermoelectric applications[J]. Sci. Rep. 2024, 14: 13067. DOI: 10.1038/s41598-024-62317-3.
[36] Wang G R, Mei Z Y, Li Y, et al.Flame-retardant thermoelectric responsive coating based on poly(3,4-ethylenedioxythiphene) modiffed metal-organic frameworks[J]. e-Polymers, 2024, 24(1): 20230138. DOI: 10.1515/epoly-2023-0138.
[37] Luo Q Y, Wu X, Wang E Q, et al., Compositing nanostructured polyaniline with single-walled carbon nanotubes for high thermoelectric performance[J]. Int. J. Energy Res. 2023, 2023: 6989497. DOI: 10.1155/2023/6989497.
[38] Yin S X, Lu W T, Wu X, et al.Enhancing thermoelectric performance of polyaniline/single-walled carbon nanotubes composites via dimethyl sulfoxide-mediated electropolymerization[J]. ACS Appl. Mater. Interfaces 2021, 13(3): 3930-3936. DOI: 10.1021/acsami.0c19100.
[39] Li Y Y, Ai L K, Luo Q Y, et al.Compositing benzothieno[3,2-b]benzofuran derivatives with single-walled carbon nanotubes for enhanced thermoelectric performance[J]. Molecules 2023, 28(18): 6519. DOI: 10.3390/molecules28186519.
[40] Li Y Y, Dong J X, Wu X, et al.Elevating thermoelectric performance by compositing dibromo-substituted thienoacene with SWCNTs[J]. ACS Appl. Mater. Interfaces 2024, 16(27): 35190-35199. DOI: 10.1021/acsami.4c07042.
[41] Qu D W, Huang X, Li X, et al.Annular flexible thermoelectric devices with integrated-module architecture[J]. npj Flexible Electron. 2020, 4(1): 1. DOI: 10.1038/s41528-020-0064-2.
[42] Liang L R, Wang M M, Wang X D, et al.Initiating a stretchable, compressible, and wearable thermoelectric generator by a spiral architecture with ternary nanocomposites for efficient heat harvesting[J]. Adv. Funct. Mater. 2022, 32(15): 2111435. DOI: 10.1002/adfm.202111435.
[43] Li H X, Ding Z F, Zhou Q, et al.Harness high-temperature thermal energy via elastic thermoelectric aerogels[J]. Nano-Micro Lett. 2024, 16(1): 151. DOI: 10.1007/s40820-024-01370-z.
[44] Li G, Chen C Z, Liu Z J, et al.Distinguishing thermoelectric and photoelectric modes enables intelligent real-time detection of indoor electrical safety hazards[J]. Mater. Horiz. 2024, 11(7): 1679. DOI: 10.1039/d3mh02187d.
[45] Sun Q, Du C Y, Chen G M.Thermoelectric materials and applications in buildings[J]. Prog. Mater. Sci. 2025, 149: 101402. DOI: 10.1016/j.pmatsci.2024.101402.
[46] Liao Z X, Zhou X Y, Wei G Y, et al.Intrinsically self-healable and wearable all-organic thermoelectric composite with high electrical conductivity for heat harvesting[J]. ACS Appl. Mater. Interfaces 2022, 14(38): 43421-43430. DOI: 10.1021/acsami.2c13593.
[47] Wu X, Yin S X, Guo C-Y.Self-healable and robust PE/PEDOT/SWCNT thermoelectric composites[J]. ACS Appl. Mater. Interfaces 2022, 14(28): 32056-32065. DOI: 10.1021/acsami.2c07490.
[48] Malik Y T, Akbar Z A, Seo J Y, et al.Self-healable organic-inorganic hybrid thermoelectric materials with excellent ionic thermoelectric properties[J]. Adv. Energy Mater. 2022, 12(6), 2103070. DOI: 10.1002/aenm.202103070.
[49] Hao Y Z, Zuo Y T, Zheng J Z, et al.Machine learning for predicting ultralow thermal conductivity and high ZT in complex thermoelectric materials[J]. ACS Appl. Mater. Interfaces 2024, 16(36): 47866-47878. DOI: 10.1021/acsami.4c09043.
[50] Ebrahimibagha D, Armida S A, Datta S, et al.Machine learning based models to investigate the thermoelectric performance of carbon nanotube-polyaniline nanocomposites[J]. Comput. Mater. Sci. 2024, 232: 112601. DOI: 10.1016/j.commatsci.2023.112601.
[51] Yang Y, Zhao G J, Cheng X, et al.Stretchable and healable conductive elastomer based on PEDOT:PSS/natural rubber for self-powered temperature and strain sensing[J]. ACS Appl. Mater. Interfaces 2021, 13(12): 14599-14611. DOI: 10.1021/acsami.1c00879. |