欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• •    

基于多尺度残差网络的光学卫星相对辐射校正方法*

陈士震1,2, 李山山1†, 石璐1   

  1. 1 中国科学院空天信息创新研究院,北京 100094;
    2 中国科学院大学 电子电气与通信工程学院,北京 100049
  • 收稿日期:2025-01-17 修回日期:2025-04-09
  • 通讯作者: E-mail:lishanshan@aircas.ac.cn
  • 基金资助:
    *国家民用空间基础设施“十三五”陆地观测卫星地面系统建设项目资助

Optical satellite relative radiometric correction method based on multi-scale residual network

CHEN ShiZhen1,2, Li ShanShan1, SHI Lu1   

  1. 1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-01-17 Revised:2025-04-09

摘要: 线阵推扫式光学卫星传感器因光学拼接和探元间响应不均匀等问题,易出现渐晕与条带噪声,特别是在高动态范围和低亮度下,非线性效应更为显著。针对这一问题,本文提出了一种基于端对端多尺度残差网络的相对辐射校正方法。首先,利用分段线性校正筛选高质量样本构建训练集;随后,搭建多尺度残差网络,结合多尺度特征提取模块与跳跃连接机制,实现渐晕与条带噪声特征的提取与融合,并从原始影像中去除。实验以GF1B多光谱影像为例,结果表明,该方法有效去除了片间渐晕及片内条纹,条纹系数较传统线性和分段线性方法分别下降26.31%和21.04%,相对标准差下降66.53%和52.32%。相比统计法与深度学习去噪模型,本文方法同样保持较高精度并在GF1C与GF1D影像上展现良好泛化能力。

关键词: 相对辐射校正, 多尺度残差网络, 特征融合, 渐晕, 条带噪声

Abstract: The linear array push-broom optical satellite sensors are prone to vignetting and striping noise due to optical stitching and uneven sensor response, particularly under high dynamic range and low brightness conditions, where nonlinear effects become more pronounced. To address this issue, this paper proposes a relative radiometric calibration method based on an end-to-end multi-scale residual network. First, a high-quality sample set is constructed for training by selecting samples using a piecewise linear correction. Then, a multi-scale residual network is built, combining multi-scale feature extraction modules and skip connections to extract and integrate the features of vignetting and striping noise, and subsequently remove them from the original image. Experiments using GF1B multispectral images demonstrate that the proposed method effectively removes inter-frame vignetting and intra-frame striping. The striping coefficient decreases by 26.31% and 21.04% compared to traditional linear and piecewise linear methods, while the relative standard deviation decreases by 66.53% and 52.32%, respectively. Compared to statistical methods and deep learning denoising models, the proposed method maintains high accuracy and shows good generalization performance on GF1C and GF1D images.

Key words: relative radiometric correction, multi-scale residual network, feature fusion, vignetting, strip noise

中图分类号: