[1] Dinguirard M, Slater P N.Calibration of space-multispectral imaging sensors A review[J]. Remote Sensing of Environment, 1999, 68(3): 194-205. DOI:10.1016/S0034-4257(98)00111-4. [2] Li L T, Zhang G, Jiang Y H, et al.An improved on-orbit relative radiometric calibration method for agile high-resolution optical remote-sensing satellites with sensor geometric distortion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5606715. DOI:10.1109/TGRS.2021.3078815. [3] 段依妮, 张立福, 晏磊, 等. 遥感影像相对辐射校正方法及适用性研究[J]. 遥感学报, 2014, 18(3): 597-617. DOI:10.11834/jrs.20143204. [4] Wang J, Gu X, Ming T, et al.Classification and gradation rule for remote sensing satellite data products[J]. National Remote Sensing Bulletin, 2013, 17(3): 566-577. DOI:10.11834/jrs.20131364. [5] 刘扬, 方俊永, 刘学, 等. 基于滤光片转轮式多光谱相机的辐射校正[J]. 中国科学院大学学报(中英文), 2024, 41(5): 636-643. DOI:10.7523/j.ucas.2022.083. [6] 师英蕊, 姜洋, 李立涛, 等. 光学卫星常态化相对辐射定标方法研究[J]. 地球信息科学学报, 2020, 22(12): 2410-2424. DOI:10.12082/dqxxkx.2020.190536. [7] 宋瑞. 基于相对辐射定标的高光谱成像去条带噪声方法研究[D]. 南京: 南京林业大学, 2022. DOI:10.27242/d.cnki.gnjlu.2022.000051. [8] 郭建宁, 于晋, 曾湧, 等. CBERS-01/02卫星CCD图像相对辐射校正研究[J]. 中国科学E辑:信息科学, 2005, 35(S1): 11-25. DOI:10.3969/j.issn.1674-7259.2005.z1.002. [9] Ratliff B M, Hayat M M, Hardie R C.An algebraic algorithm for nonuniformity correction in focal-plane arrays[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2002, 19(9): 1737-1747. DOI:10.1364/jossa.19.001737. [10] Li Z, Wei J, Huang X, et al.Laboratory radiometric calibration technique of an imaging system with pixel-level adaptive gain[J]. Sensors, 2023, 23(4): 2083. DOI:10.3390/s23042083. [11] 王灵丽, 武红宇, 白杨, 等. 基于可展开式太阳漫反射板的星上相对辐射定标[J]. 遥感学报, 2021, 25(10): 2067-2075. DOI:10.11834/jrs. 20210064. [12] Begeman C. Helder D, Leigh L, et al.Relative radiometric correction of pushbroom satellites using the yaw maneuver[J]. Remote Sensing, 2022, 14(12): 2820. DOI:10.3390/rs14122820. [13] Chen R, Wang M, Pi Y D, et al.An improved side-slither relative radiometric calibration method for WFV satellite: taking HY1D CZI as an example[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 10893-10913. DOI:10.1109/JSTARS.2024.3402812. [14] 陈儒, 韩静雨, 王密, 等. 海洋一号D卫星海岸带成像仪偏航90°相对辐射定标[J]. 遥感学报, 2023, 27(1): 43-54. DOI:10.11834/jrs.20221611. [15] 杨赞伟. 基于CMOS传感器的高光谱遥感图像非均匀性校正技术研究 [D]. 长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020. DOI:10.27522/d.cnki.gkcgs.2020.000101. [16] Bian J, Hu Z Y, Wang Q Y, et al.Nonlinear response correction based on fully connected neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 7000605. DOI:10.1109/LGRS.2024.3367175. [17] 王玲, 胡秀清, 郑照军, 等. 联合南北极冰雪目标的FY-3A/MERSI辐射定标跟踪监测[J]. 光学学报, 2018, 38(2): 0212003. DOI:10.3788/AOS201838.0212003. [18] 李海超, 满益云. 基于非均匀同区域线性CCD成像的卫星姿态调整与非线性定标方法[J]. 红外与激光工程, 2015, 44(4): 1370. DOI:10.3969/j.issn.1007-2276.2015.04.045. [19] Kim N, Han S S, Jeong C S.ADOM: ADMM-based optimization model for stripe noise removal in remote sensing image[J]. IEEE Access, 2023, 11: 106587-10606. DOI:10.1109/ACCESS.2023.3319268. [20] 张兵. 遥感大数据时代与智能信息提取[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1861-1871. DOI:10.13203/j.whugis20180172. [21] 刘李, 高海亮, 潘志强, 等. 基于深度学习的在轨辐射定标方法研究[J]. 航天返回与遥感, 2017, 38(2): 64-71. DOI:10.3969/j.issn.1009-8518.2017.02.009. [22] Guan J T, Lai R, Xiong A.Wavelet deep neural network for stripe noise removal[J]. IEEE Access, 2019, 7: 44544-445554. DOI:10.1109/ACCESS.2019.2908720. [23] Xiao P F, Guo Y C, Zhuang P X.Removing stripe noise from infrared cloud images via deep convolutional networks[J]. IEEE Photonics Journal, 2018, 10(4): 7801114. DOI:10.1109/JPHOT.2018.2854303. [24] Yu X, Fan J F, Zhang M Z, et al.Relative radiation correction based on CycleGAN for visual perception improvement in high-resolution remote sensing images[J]. IEEE Access, 2021, 9: 106627-106640. DOI:10.1109/ACCESS.2021.3101110. [25] Adegun A A, Viriri S, Tapamo J R.Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis[J]. Journal of Big Data, 2023, 10(1): 93. DOI:10.1186/s40537-023-00772-x. [26] He K M, Zhang X Y, Ren S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778. DOI:10.1109/CVPR.2016.90. [27] Shi W Z, Caballero J, Huszár F, et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 1874-1883. DOI:10.1109/CVPR.2016.207. [28] 敖为赳, 陈文志, 童英良. GF-1B、C、D星数据质量在轨测试评价研究[J]. 浙江国土资源, 2019(2): 46-49. DOI:10.16724/j.cnki.cn33-1290/p.2019.02.026. |