欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

纵向偏心的空心液滴撞击小圆柱体的数值研究*

杨林凯, 汤龙民, 周光照   

  1. 中国科学院大学工程科学学院,北京 101408
  • 收稿日期:2025-03-20 修回日期:2025-07-14 发布日期:2025-07-16
  • 通讯作者: E-mail:zgz@ucas.ac.cn
  • 基金资助:
    *国家自然科学基金(12202441)资助

Numerical study of a vertically eccentric hollow droplet impacting on a small cylinder

YANG Linkai, TANG Longmin, ZHOU Guangzhao   

  1. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2025-03-20 Revised:2025-07-14 Published:2025-07-16

摘要: 本文对气泡纵向偏心的空心液滴撞击超疏水小圆柱的动力学行为进行了直接数值模拟研究。根据液滴在撞击过程中经历的拓扑结构变化,确定了4种典型的撞击模式:直接反弹、破裂回缩、连续破裂和顶部破裂;分析了这些模式间的转变与韦伯数和气泡偏心比等无量纲参数的关系,并讨论了不同模式下液滴的铺展比、速度、动能等关键物理量随时间的变化规律。进一步的定量分析表明,在所考察的参数范围内,空心液滴在撞击过程中的最大铺展比是气泡纵向位置的非单调函数;对于相对较大的韦伯数,较小的气泡偏心程度更有利于液滴的铺展。另一方面,液滴破裂的无量纲时间与气泡偏心比近似呈线性关系,与韦伯数大小的关联性较弱。

关键词: 空心液滴, 气泡偏心, 液滴撞击, 拓扑结构变化

Abstract: This paper presents a direct numerical simulation study of the effect of bubble vertical eccentricity on the behavior of a hollow droplet impacting on a super-hydrophobic cylindrical target. Based on the topological changes the droplet undergoes during impact, four typical regimes are identified: direct bounce, break-retract, break-break, and top break. The transitions between these regimes are analyzed in relation to the dimensionless parameters including the Weber number and bubble eccentricity ratio. Furthermore, the temporal evolution of key physical quantities, such as the spreading ratio, velocity, and kinetic energy, is discussed for each regime. Quantitative analysis further reveals that, with the range of parameters considered, the maximum spreading ratio of the hollow droplet during impact is a non-monotonic function of the bubble's vertical position. For relatively large Weber numbers, a smaller degree of bubble eccentricity facilitates droplet spreading. On the other hand, the dimensionless rupture time demonstrates an approximately linear relationship with the bubble eccentricity ratio, while exhibiting only a weak correlation with the Weber number.

Key words: hollow droplet, bubble eccentricity, droplet impact, topological change

中图分类号: