欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

潜水含水层地下水污染羽时空演化机器学习通用替代模型研究*

刘润枫1, 王明玉2†   

  1. 1 辽宁工程技术大学矿业学院,辽宁阜新 123000;
    2 中国科学院大学资源与环境学院,北京 101408
  • 收稿日期:2025-03-20 修回日期:2025-07-14 发布日期:2025-07-16
  • 通讯作者: E-mail: mwang@ucas.ac.cn
  • 基金资助:
    *国家重点研发计划项目(2020YFC1807102)、国家自然科学基金(42477092)资助

Generic Machine Learning Surrogate Models for Spatiotemporal Evolution of Groundwater Contamination Plumes in Phreatic Aquifers

LIU Runfeng1, WANG Mingyu2   

  1. 1 Liaoning Technical University, Fuxin 123000, Liaoning, China;
    2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2025-03-20 Revised:2025-07-14 Published:2025-07-16

摘要: 监测自然衰减作为一种经济高效的地下水污染修复技术,其精准实施高度依赖于对污染羽演化的可靠预测。本研究针对传统数值模拟方法的效率瓶颈,构建了"正交实验-Flopy自动化建模-机器学习"三位一体的通用预测模型框架。通过情景设计与数值模拟批量生成200-31200组不同规模、多维时空演化数据集,利用这些数据集,结合不同数据集容量及模型训练参数,训练模型参数及数据集容量对静态预测(Multilayer Perceptron,MLP)与动态预测(Spatiotemporal-MLP,ST-MLP)模型性能的差异化影响,从而揭示了数据规模与模型架构的耦合作用机制:静态MLP模型在1000组数据量级即可实现0.97的污染范围预测精度,而动态ST-MLP模型需23400组数据达到0.991的时空解析精度。此外,研究发现时间节点采样频率优化(180天/次)可使ST-MLP的数据生成成本降低40%,并且维持精度大于0.98的技术指标。本模型体系具有潜在的应用价值,一方面可为监测自然衰减技术的可行性评估提供量化依据;另一方面,其污染羽时空演化快速预测能够突破传统风险评估的静态耗时局限,可有效建立地下水污染扩散风险的快捷动态预警机制。

关键词: 地下水污染, 污染羽, 时空演化, 替代模型, 机器学习

Abstract: As a cost-effective groundwater remediation technology, the precise implementation of Monitored Natural Attenuation critically relies on reliable predictions of contamination plume evolution. To address the efficiency limitations of traditional numerical simulation methods, this study developed a general-purpose predictive modeling framework integrating three key components: orthogonal experimental design, Flopy-based automated modeling, and machine learning. Through scenario design and batch numerical simulations, we generated 200-31,200 multidimensional spatiotemporal datasets representing groundwater contamination plumes of varying scales. Leveraging these datasets, we systematically investigated the differential impacts of dataset sizes and the model training parameters on the performance of the static prediction (Multilayer Perceptron,MLP) and the dynamic spatiotemporal prediction (Spatiotemporal-MLP, ST-MLP) models. Our findings elucidate the coupling mechanism between the data scale and the model architecture: the static MLP achieved a contamination extent prediction accuracy of 0.97 with 1,000 training samples, whereas the dynamic ST-MLP required 23,400 samples to attain a spatiotemporal resolution accuracy of 0.991. Furthermore, optimizing temporal node sampling frequency (every 180 days) reduced the data generation costs by 40% for ST-MLP while maintaining accuracy above 0.98. This framework demonstrates the dual application values: (1) providing quantitative benchmarks for MNA feasibility assessments, and (2) enabling rapid spatiotemporal plume predictions to overcome the static and time-consuming limitations of conventional risk assessments, thereby establishing an efficient dynamic early-warning mechanism for groundwater contamination risks.

Key words: groundwater contamination, contaminant plume, spatiotemporal evolution, surrogate models, machine learning

中图分类号: