欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2009, Vol. 26 ›› Issue (4): 503-512.DOI: 10.7523/j.issn.2095-6134.2009.4.011

• 论文 • 上一篇    下一篇

基于主动式边界基元模型的多类目标识别方法

孙显1,2, 胡岩峰1, 王宏琦1   

  1. 1. 中国科学院电子学研究所, 北京 100190;
    2. 中国科学院研究生院, 北京 100049
  • 收稿日期:2008-12-02 修回日期:2009-04-10 发布日期:2009-07-15
  • 通讯作者: 孙显
  • 基金资助:

    国家自然科学基金(40871209)、国家863计划(2006AA12Z149)和中国科学院电子学研究所青年创新基金资助 

Multi-categorical object recognition using method based on active contour basis model

SUN Xian1,2, HU Yan-Feng1, WANG Hong-Qi1   

  1. 1. Institute of Electronic, Chinese Academy of Sciences, Beijing 100190, China;
    2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2008-12-02 Revised:2009-04-10 Published:2009-07-15

摘要:

针对形状特征,提出了一种基于主动式边界基元模型的多类目标自动识别方法. 该方法以主动式边界基元为基础构建字典,可准确描述各类目标的形状结构, 不受尺度、旋转等变化的影响;然后,综合分析上下文信息进行概率学习,采用级联框架和Bootstrap动态采样训练最优边界分类器,实现目标的类别识别和位置定位,并可获取精确形状. 实验结果表明,该方法能有效提取多种类型和复杂结构的目标,具有较强的实用价值.

关键词: 目标识别, 边界基元, 概率学习, 形状特征

Abstract:

A new multi-categorical object recognition method based on the active contour basis model is proposed. The method builds a class-specific codebook of active contour bases, which is robust to scale variation and pose changes. Probabilistic learning by analyzing contextual information is performed using cascaded frame and boot strap dynamic sampling. A classifier is trained to determine the object categories and exact regions. Experimental results demonstrate that the proposed method achieves high efficiency in extracting manifold and complicated objects.

Key words: object recognition, contour basis, probabilistic learning, shape feature

中图分类号: