欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2013, Vol. 30 ›› Issue (4): 562-567.DOI: 10.7523/j.issn.2095-6134.2013.04.019

• 计算机科学 • 上一篇    下一篇

基于马尔科夫链的软件故障分类预测模型

易锦1, 罗峋2, 凹建勋3, 杨光宇4, 罗平4   

  1. 1. 中国信息安全测评中心, 北京 100085;
    2. 香港科技大学;
    3. 中国人民解放军95973部队, 昆明 650500;
    4. 清华大学软件学院信息系统安全教育部重点实验室, 信息科学与技术国家实验室, 北京 100084
  • 收稿日期:2012-04-12 修回日期:2012-08-30 发布日期:2013-07-15
  • 通讯作者: 罗平
  • 基金资助:

    国家自然科学基金重点项目(90818021,9071803)资助 

Software fault classification prediction model based on Markov chain

YI Jin1, LUO Xun2, AO Jian-Xun3, YANG Guang-Yu4, LUO Ping4   

  1. 1. China Information Technology Security Evaluation Center, Beijing 100085, China;
    2. Hong Kong University of Science and Technology, Hong Kong;
    3. PLA 95973 Unit, Kunming 650500, China;
    4. Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology, School of Software, Tsinghua University, Beijing 100084, China
  • Received:2012-04-12 Revised:2012-08-30 Published:2013-07-15

摘要:

传统的软件可靠性模型一般未考虑故障的危害严重程度对软件失效的影响. 然而在很多研究(如软件可信性研究)中,不仅要考虑软件的失效率、故障总数与失效间隔时间等,同时也要考虑故障的危害严重程度对软件可信性的影响. 为解决上述问题,提出一种基于马尔科夫链的预测方法,用以预测软件未来发生故障的种类,即预测软件未来发生故障的危害严重程度. 这种分类预测方法可以更加全面地描述由软件故障引起的失效问题.

关键词: 软件可靠性, 马尔科夫链, 严重程度, 软件可信性

Abstract:

Traditional software reliability models did not consider the severity of the fault affected the reliability of software. However, in many occasions, such as software trustworthy study, we must consider not only the software failure rate, the total number of faults, and failure interval time, but also the severity of the impact on software reliability. For solving the above problem, we propose a prediction method based on Markov chain, which can be used to predict the software failure types, that is, to predict software failure severity occurring in the future.This classification prediction method can fully describe failures caused by software failure.

Key words: software reliability, Markov chain, severity, software trustworthiness

中图分类号: