欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2014, Vol. 31 ›› Issue (5): 586-589.DOI: 10.7523/j.issn.2095-6134.2014.05.002

• 数学 • 上一篇    下一篇

有限域上Ⅰ-型最优正规基对偶基复杂度的新证明

吴保峰, 周凯, 刘卓军   

  1. 中国科学院数学与系统科学研究院数学机械化实验室, 北京 100190
  • 收稿日期:2013-03-04 修回日期:2013-09-06 发布日期:2014-09-15
  • 通讯作者: 吴保峰,E-mail:wubaofeng@amss.ac.cn
  • 基金资助:

    Supported by National Basic Research Program of China (2011CB302400) and National Natural Science Foundation of China(11301509)

A new proof to the complexity of the dual basis of a type-Ⅰ optimal normal basis over finite fields

WU Baofeng, ZHOU Kai, LIU Zhuojun   

  1. Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2013-03-04 Revised:2013-09-06 Published:2014-09-15
  • Supported by:

    Supported by National Basic Research Program of China (2011CB302400) and National Natural Science Foundation of China(11301509)

摘要:

万哲先和周凯于2007年确定出有限域Fqn上Ⅰ-型最优正规基对偶基的复杂度在q为偶数和奇数的情况分别为3n-3和3n-2.我们通过利用关于有限域多项式基对偶基的一个引理,更清晰地求出I-型最优正规基的对偶基,从而给出其复杂度的一个新证明.

关键词: 最优正规基, 对偶基, 复杂度, 多项式基

Abstract:

The complexity of the dual basis of a type-Ⅰ optimal normal basis of Fqn over Fq was determined to be 3n-3 or 3n-2 according as q is even or odd, respectively, by Wan and Zhou in 2007. We give a new proof to this result by clearly deriving the dual of a type-Ⅰ optimal normal basis with the aid of a lemma on the dual of a polynomial basis.

Key words: optimal normal basis, dual basis, complexity, polynomial basis

中图分类号: