The boundedness of the fractional truncation operators
CUI Xiaona1, YAN Dunyan2
1. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan, China; 2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
[1] Lu S Z, Ding Y, Yan D Y. Singular integral and related topics[M]. World Scientific Publishing Co Pte Ltd, 2007: 144-148. [2] Lu S Z, Zhang Y. Criterion on Lp boundedness for a class of oscillatory singular integrals with rough kernels[J]. Rev. Mat. Iber., 1992(8): 201-219. [3] Lu S Z, Yan D Y. Lp-boundedness of multilinear oscillatory singular integrals with Calderon-Zygmund kernel[J]. Science in China (Series A), 2002, 45(2): 196-213. [4] Shi Z S, Yan D Y. Criterion on Lp1×Lp2→Lq-boundedness for oscillatory bilinear hilbert transform[J]. Abstract and Applied Analysis, Volume 2014, Article ID 712 051. [5] 陆善镇,王昆阳.实分析[M].北京:北京师范大学出版社,2006. [6] 丁勇. 现代分析基础[M]. 北京:北京师范大学出版社, 2008: 143-149. [7] Grafakos L. Classical fourier analysis[M]. 2nd ed. Springer-Verlag, Graduate Texts in Mathematics 249, 2008: 77-82. [8] Stein E, Weiss G. Introduction to Fourier analysis on euclidean spaces[M]. Princeton University Press, Princeton, New Jersey, 1971: 53-75. [9] Fernandez D. Vector-valued singular integral operators on Lp-spaces with mixed norms and applications[J]. Pacific J Math, 1987,129: 257-275. [10] Stefanov A, Torres R. Calderón-Zygmund operators on mixed Lebesgue spaces and applications to null forms[J]. J London Math Soc, 2004,70(2): 447-462.