欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2018, Vol. 35 ›› Issue (2): 188-192.DOI: 10.7523/j.issn.2095-6134.2018.02.006

• 中国工程热物理学会2016年传热年会专栏 • 上一篇    下一篇

低压加热条件下水膜蒸发特性

王超, 陈学, 胥蕊娜, 姜培学   

  1. 清华大学热能工程系热科学与动力工程教育部重点实验室, 北京 100084
  • 收稿日期:2017-05-08 修回日期:2017-08-31 发布日期:2018-03-15
  • 通讯作者: 姜培学
  • 基金资助:
    国家自然科学基金(51606108)、中国博士后基金(2016M601023)和国家自然科学基金创新研究群体项目(51621062)资助

Water film heating evaporation under low pressure

WANG Chao, CHEN Xue, XU Ruina, JIANG Peixue   

  1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
  • Received:2017-05-08 Revised:2017-08-31 Published:2018-03-15

摘要: 针对低压密闭腔体内水膜的加热蒸发现象,利用斐克扩散定律构建一维蒸发模型。基于饱和水温度和压力的对应关系,发展一种确定扩散边界层厚度的方法。搭建水膜低压加热蒸发的实验系统,实验研究不同压力条件下水膜的蒸发质量和温度随时间的变化。通过对比蒸发质量和温度变化的模型预测结果和实验结果,发现二者数据的吻合度较高,表明该模型能够较为准确地预测低压加热条件下的水膜蒸发特性。基于当前的数学模型,进一步研究真空压力、加热热流密度和蒸发容积对水膜蒸发速率、蒸发质量和蒸汽压力的影响。研究发现,压力越低、加热热流密度越高和蒸发容积越大,水膜的蒸发速率越大,达到饱和状态的时间越短。

关键词: 斐克定律, 蒸发模型, 水膜蒸发, 蒸发速率, 扩散边界层

Abstract: A one-dimensional evaporation model for simulating water evaporation under vacuum condition is proposed by using Fick's diffusion law. Based on the correspondence between saturated water temperature and pressure, a method for determining the thickness of diffusion boundary layer is developed. An experimental system of water film low pressure heating and evaporation is set up. The vaporization and temperature variations of water film under different conditions are studied. By comparing the predicted results and experimental data for evaporation mass and temperature changes, it is found that the model accurately predicts the evaporation characteristics of water film under low pressure and heating conditions. Based on the current mathematical model, the effects of vacuum pressure, heating heat flux, and chamber volume on water evaporation rate and vapor pressure are further studied. The results indicate that the lower the pressure, the higher the heat flux, and the larger the chamber volume are, the higher evaporation rate is and the shorter time is needed to reach saturation.

Key words: Fick's law, evaporation model, film evaporation, evaporation rate, diffusion boundary

中图分类号: