欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2020, Vol. 37 ›› Issue (4): 562-569.DOI: 10.7523/j.issn.2095-6134.2020.04.017

• 计算机科学 • 上一篇    下一篇

基于级联卷积网络的面部关键点定位算法

孙铭堃1,2, 梁令羽1,2, 汪涵1, 何为1, 赵鲁阳1   

  1. 1. 中国科学院上海微系统与信息技术研究所 宽带无线移动通信研究室, 上海 201800;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2019-01-03 修回日期:2019-03-22 发布日期:2020-07-15
  • 通讯作者: 何为
  • 基金资助:
    国家重点研发计划(2018YFC1505204)和中国科学院青年创新促进会(2015186)资助

Facial landmark detection based on cascade convolutional neural network

SUN Mingkun1,2, LIANG Lingy1,2, WANG Han1, HE Wei1, ZHAO Luyang1   

  1. 1. Broadband Wireless Mobile Communications Research Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-01-03 Revised:2019-03-22 Published:2020-07-15
  • Supported by:
     

摘要: 目前,人的面部关键点定位算法在限定环境下已达到很高的识别率,但在非限定环境下,仍易受到环境光线不均、测试角度范围广、检测目标姿态多样及遮挡模糊等因素的影响。提出一种级联卷积网络以提高关键点定位的精度与鲁棒性。在进行人脸检测时,该算法在Light-VGGNet的基础上提出一种DPM-CNN网络结构,引入五官可变形部件,将人脸检测与五官定位同时进行,提高人脸检测精度并降低人脸检测对面部关键点定位的影响。在进行内部关键点定位时,采用由粗到细的算法思想,将两层不同的网络级联实现对内外关键点的定位。利用FDDB数据集进行测试,无论在人脸检测,还是面部关键点定位上,所提出的卷积网络结构准确度和检测速度均高于其他算法,在非限定环境下表现出很好的鲁棒性。

 

关键词: 非限定环境, 级联卷积网络, Light-VGGNet, DPM-CNN, 人脸检测, 面部关键点定位

Abstract: Current facial landmark detection algorithm has achieved promising recognition rates in constrained environment, but in unconstrained environment it is still susceptible to various factors such as non-uniform ambient illumination, wide range of angles, variations in pose, occlusion, and blur. To deal with these problems, we propose a cascade convolutional network to improve the accuracy and robustness of the landmark detection. In face detection, we propose a DPM-CNN model based on Light-VGGNet, which introduces the location information of the facial features. In this way, the detection accuracy is improved and the impact of face detection on the positioning of landmarks is reduced. In facial landmark detection, this algorithm adopts two different layers of cascade networks progressively to complete the positioning of the internal and external landmarks. Finally, on the FDDB dataset, this new algorithm is proved to have higher accuracy rate and detection speed than other algorithms in face detection or in facial landmark location. This algorithm is also robust in an unconstrained environment.

Key words: unconstrained environment, cascade convolutional neural network, Light-VGGNet, DPM-CNN, face detection, facial landmark location

中图分类号: