欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2021, Vol. 38 ›› Issue (5): 712-719.DOI: 10.7523/j.issn.2095-6134.2021.05.016

• 计算机科学 • 上一篇    

基于dropout算法的卷积神经网络单粒子翻转容错方法

钱欢, 谢卓辰, 梁旭文   

  1. 中国科学院微小卫星创新研究院 中国科学院微小卫星重点实验室, 上海 201203;中国科学院大学, 北京 100049
  • 收稿日期:2019-12-11 修回日期:2020-04-08 发布日期:2021-09-13
  • 通讯作者: 梁旭文
  • 基金资助:
    上海市青年科技英才扬帆计划项目(17YF1418200)和国家自然科学基金(91738201)资助

Single-event upsets fault tolerance of convolutional neural networks based on dropout algorithm

QIAN Huan, XIE Zhuochen, LIANG Xuwen   

  1. Key Laboratory of Microsatellites of CAS, Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai 201203, China;University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-12-11 Revised:2020-04-08 Published:2021-09-13

摘要: 空间辐照干扰尤其是单粒子翻转(SEU)效应对神经网络芯片的正常稳定运行造成很大影响,它会导致存储在芯片SRAM存储器的权重参数随机发生比特位翻转,进而神经元的权重参数值发生变化,直接影响神经网络芯片输出的准确度。在分析现有的一些抗辐照干扰方法基础上,针对芯片硬件开销、恢复时间与处理速度的问题,利用软件仿真研究在不同比例权重参数出错的情况下神经网络的测试准确度,就结果准确度下降的情况,采用dropout算法构建新的网络框架,以一定概率屏蔽受到SEU影响的神经元。仿真实验结果表明,该方法可以提升受SEU干扰神经网络的准确度。

关键词: SEU干扰, SRAM存储器, 神经网络芯片, 权重参数

Abstract: Space radiation interference especially the single event upset (SEU) effect can make a great impact on the normal and stable operation of the neural network chips, which can lead to the random bit flips of the weight parameters stored in the SRAM, and thus change the values of the neural weight parameters and the accuracy of the neural network chip outputs. In this paper, we analyze the commonly used radiation resistant methods, and try to overcome the problem of hardware consumption, recovery time, and processing speed. After the software simulation of the neural network accuracy with the different ratios of weight parameter errors, we adopt the dropout algorithm to construct the novel network framework to avoid the decline of accuracy. The algorithm can mask the neurons affected by SEU with some probability. The simulation experiment results show that this method can promote the accuracy of the neural network affected by SEU.

Key words: SEU interference, SRAM memory, neural network chip, weight parameter

中图分类号: