[1] Singh U K, Joshi C. Quantitative security risk evaluation using CVSS metrics by estimation of frequency and maturity of exploit[C]//2016 Proceedings of the World Congress on Engineering and Computer Science (WCECS). October 19-21, 2016, San Francisco, USA. Newswood Limited, 2016: 170-175. [2] Gallon L. On the impact of environmental metrics on CVSS scores[C]//2010 IEEE Second International Conference on Social Computing (SocialCom). September 30, 2010, Minneapolis, MN, USA. IEEE, 2010: 987-992. DOI:10.1109/SocialCom.2010.146. [3] Allodi L, Biagioni S, Crispo B, et al. Estimating the assessment difficulty of CVSS environmental metrics: an experiment[C]//2017 Future Data and Security Engineering: 4th International Conference (FDSE). November 29–December 1, 2017, Ho Chi Minh City, Vietnam. Springer, 2017: 23-39. DOI:10.1007/978-3-319-70004-5_2. [4] Holm H, Afridi K K. An expert-based investigation of the common vulnerability scoring system[J]. Computers & Security, 2015, 53: 18-30. DOI:10.1016/j.cose.2015.04.012. [5] Peterson L E. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2): 1883. DOI:10.4249/scholarpedia.1883. [6] Kramer O. K-nearest neighbors[M]//Dimensionality Reduction with Unsupervised Nearest Neighbors, Berlin:Springer Berlin Heidelberg, 2013: 13-23. DOI: 10.1007/978-3-642-38652-7_2. [7] 王秋艳, 张玉清. 一种通用漏洞评级方法[J]. 计算机工程, 2008, 34(19): 133-136, 140. DOI: 10.3969/j.issn.1000-3428.2008.19.046. [8] 温涛. 安全漏洞危害评估研究暨标准漏洞库的设计与实现[D].西安:西安电子科技大学, 2016. [9] 贾炜, 冯登国, 连一峰. 基于网络中心性的计算机网络脆弱性评估方法[J]. 中国科学院研究生院学报, 2012, 29(4): 529-535. DOI: 10.7523/j.issn.2095-6134.2012. 4.015. [10] Ammann P, Wijesekera D, Kaushik S. Scalable, graph-based network vulnerability analysis[C]//2002 Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS). November 18–22, 2002, Washington, DC, USA. ACM, 2002: 217-224. DOI:10.1145/586110.586140. [11] Dawkins J, Hale J. A systematic approach to multi-stage network attack analysis[C]//2004 Second IEEE International Information Assurance Workshop (IWIA). August 24, 2004, Charlotte, NC, USA. IEEE, 2004: 48-56. DOI:10.1109/IWIA.2004.1288037. [12] 陆余良, 夏阳. 主机安全量化融合模型研究[J]. 计算机学报, 2005(05): 914-920. DOI:10.3321/j.issn:0254-4164.2005.05.021. [13] Kalogeraki E M, Papastergiou S, Panayiotopoulos T. An attack simulation and evidence chains generation model for critical information infrastructures[J]. Electronics, 2022, 11(3): 404. DOI: 10.3390/electronics11030404. [14] Forum of Incident Response and Security Teams. Common vulnerability scoring system[EB/OL]. (2021-12-25)[2021/12/29]. https://www.first.org/cvss/. [15] Schiffman M, Wright A, Ahmad D, et al. The common vulnerability scoring system[R]. National Infrastructure Advisory Council, Vulnerability Disclosure Working Group, Vulnerability Scoring Subgroup, 2004:2-20. [16] Mell P, Scarfone K, Romanosky S. Common vulnerability scoring system[J]. IEEE Security & Privacy, 2006, 4(6): 85-89. DOI:10.1109/MSP.2006.145. [17] 雷柯楠, 张玉清, 吴晨思, 等.基于漏洞类型的漏洞可利用性量化评估系统[J].计算机研究与发展, 2017, 54(10):2296-2309. DOI:10.7544/issn1000-1239.2017.20170457. [18] Liu Q X, Zhang Y Q, Kong Y, et al. Improving VRSS-based vulnerability prioritization using analytic hierarchy process[J]. Journal of Systems and Software, 2012, 85(8): 1699-1708. DOI: 10.1016/j.jss.2012.03.057. [19] Keskin O, Gannon N, Lopez B, et al. Scoring cyber vulnerabilities based on their impact on organizational goals[C]//2021 Systems and Information Engineering Design Symposium (SIEDS). April 29-30, 2021, Charlottesville, VA, USA. IEEE, 2021: 1-6. DOI: 10.1109/SIEDS52267. 2021.9483741. [20] Yin J, Tang M J, Cao J L, et al. A real-time dynamic concept adaptive learning algorithm for exploitability prediction[J]. Neurocomputing, 2022, 472: 252-265. DOI: 10.1016/j.neucom.2021.01.144. [21] Lyu J H, Bai Y D, Xing Z C, et al. A character-level convolutional neural network for predicting exploitability of vulnerability[C]//2021 International Symposium on Theoretical Aspects of Software Engineering (TASE). August 25-27, 2021, Shanghai, China. IEEE, 2021: 119-126. DOI: 10.1109/TASE52547.2021.00014. [22] Bhatt N, Anand A, Yadavalli V S S. Exploitability prediction of software vulnerabilities[J]. Quality and Reliability Engineering International, 2021, 37(2): 648-663. DOI:10.1002/qre.2754. [23] Yin J, Tang M J, Cao J L, et al. Apply transfer learning to cybersecurity: predicting exploitability of vulnerabilities by description[J]. Knowledge-Based Systems, 2020, 210: 106529. DOI: 10.1016/j.knosys.2020.106529. [24] Fang Y, Liu Y C, Huang C, et al. FastEmbed: predicting vulnerability exploitation possibility based on ensemble machine learning algorithm[J]. PLoS One, 2020, 15(2): e0228439. DOI: 10.1371/journal.pone.0228439. [25] 孙宇祥, 周献中, 戴迪.基于属性约简与BP神经网络的舰艇目标威胁评估方法[J].指挥与控制学报, 2021, 7(4):397-402. DOI:10.3969/j.issn.2096-0204.2021.04.0397. [26] 毋雪雁, 王水花, 张煜东.K最近邻算法理论与应用综述[J].计算机工程与应用, 2017, 53(21):1-7. DOI:10.3778/j.issn.1002-8331.1707-0202. [27] 张庆国, 张宏伟, 张君玉. 一种基于 k最近邻的快速文本分类方法[J]. 中国科学院研究生院学报, 2005, 22(5): 554-559. DOI: 10.7523/j.issn.2095-6134.2005.5.004. |