[1] Guan Y Y, Song Q Y, Qi W J, et al.Multidimensional resource fragmentation-aware virtual network embedding for IoT applications in MEC networks[J]. IEEE Internet of Things Journal, 2023, 10(24): 22223-22232. DOI: 10.1109/JIOT.2023.3304976. [2] Wu M R, Song Q Y, Guo L, et al.Energy-efficient secure computation offloading in wireless powered mobile edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6907-6912. DOI: 10.1109/TVT.2023.3236327. [3] Bitam S, Mellouk A, Zeadally S.Bio-inspired routing algorithms survey for vehicular ad hoc networks[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 843-867. DOI: 10.1109/COMST.2014.2371828. [4] Tabatabaee Malazi H, Chaudhry S R, Kazmi A, et al.Dynamic service placement in multi-access edge computing: A systematic literature review[J]. IEEE Access, 2022, 10: 32639-32688. DOI: 10.1109/ACCESS.2022.3160738. [5] Sarkar I, Adhikari M, Kumar N, et al.Dynamic task placement for deadline-aware IoT applications in federated fog networks[J]. IEEE Internet of Things Journal, 2022, 9(2): 1469-1478. DOI: 10.1109/JIOT.2021.3088227. [6] Sugawara S.Implementing a dynamic-static hybrid fog computing system for content sharing on local networks[C]// 2024 IEEE International Conference on Consumer Electronics (ICCE). January 6-8, 2024, Las Vegas, NV, USA. IEEE, 2024: 1-4. DOI: 10.1109/ICCE59016.2024.10444138. [7] Azizi S, Farzin P, Shojafar M, et al.A scalable and flexible platform for service placement in multi-fog and multi-cloud environments[J]. The Journal of Supercomputing, 2024, 80(1): 1109-1136. DOI: 10.1007/s11227-023-05520-9. [8] Lee G, Saad W, Bennis M.An online secretary framework for fog network formation with minimal latency[C]// 2017 IEEE International Conference on Communications (ICC) . May 21-25, 2017, Paris, France. IEEE, 2017: 1-6. DOI: 10.1109/ICC.2017.7996574. [9] Yousefpour A, Patil A, Ishigaki G, et al. Qos-aware dynamic fog service provisioning [EB/OL].2018:1802.00800. https://arxiv.org/abs/1802.00800v2. [10] Mahmud R, Ramamohanarao K, Buyya R.Latency-aware application module management for fog computing environments[J]. ACM Transactions on Internet Technology (TOIT), 2019, 19(1): 1-21. DOI: 10.1145/3186592. [11] Hou Y J, Zhang K S, Chen Z B, et al.Joint server activation and network slice deployment in mobile edge computing networks[C]// 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). September 2-5, 2024, Valencia, Spain. IEEE, 2024: 1-7. DOI: 10.1109/PIMRC59610.2024.10817430. [12] Masoumi M, de Miguel I, Brasca F G, et al. Leveraging load balance metrics to unravel the impact of multi-access edge computing locations on online dynamic network performance[J]. IEEE Open Journal of the Communications Society, 2024, 5: 5635-5651. DOI:10.1109/OJCOMS.2024.3453972. [13] Hu M L, Wang H, Xu X H, et al.Joint optimization of microservice deployment and routing in edge via multi-objective deep reinforcement learning[J]. IEEE Transactions on Network and Service Management, 2024, 21(6): 6364-6381. DOI:10.1109/TNSM.2024.3443872. [14] Liang J Y, Feng Z H, Gao H, et al.Deep reinforcement learning based reliability-aware resource placement and task offloading in edge computing[C]// 2024 IEEE International Conference on Web Services (ICWS). July 7-13, 2024, Shenzhen, China. IEEE, 2024: 686-695. DOI:10.1109/ICWS62655.2024.00088. [15] Xue H, Xia Y.Profit-aware edge server placement based on all-pay auction for edge offloading[C]// 2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS). June 19-21, 2024, Guangzhou, China. IEEE, 2024: 1-2. DOI:10.1109/IWQoS61813.2024.10682876. [16] Chai H Y, Wang H D, Li T, et al.Generative AI-driven digital twin for mobile networks[J]. IEEE Network, 2024, 38(5): 84-92. DOI:10.1109/MNET.2024.3420702. [17] Velasquez K, Abreu D P, Curado M, et al.Service placement for latency reduction in the Internet of Things[J]. Annals of Telecommunications, 2017, 72(1): 105-115. DOI:10.1007/s12243-016-0524-9. [18] Gong Y D.Optimal edge server and service placement in mobile edge computing[C]// 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). December 11-13, 2020, Chongqing, China. IEEE, 2020: 688-691. DOI: 10.1109/ITAIC49862.2020.9339180. [19] Kim W S, Chung S H.User-participatory fog computing architecture and its management schemes for improving feasibility[J]. IEEE Access, 2018, 6: 20262-20278. DOI: 10.1109/ACCESS.2018.2815629 [20] Yu R Z, Xue G L, Zhang X.Application provisioning in FOG computing-enabled internet-of-things: A network perspective[C]// IEEE INFOCOM 2018-IEEE Conference on Computer Communications. April 16-19, 2018, Honolulu, HI, USA. IEEE, 2018: 783-791. DOI: 10.1109/INFOCOM.2018.8486269. [21] Ouyang T, Zhi Z, Xu C.Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2333-2345. DOI: 10.1109/JSAC.2018.2869954. [22] Yakubu A B, Abd El-Malek A H, Abo-Zahhad M, et al. Task Offloading and Resource Allocation in an RIS-assisted NOMA-based Vehicular Edge Computing[J]. IEEE Access, 2024, 12: 124330-124348. DOI: 10.1109/ACCESS.2024.3454810 [23] Ning Z L, Dong P R, Wang X J, et al.Distributed and dynamic service placement in pervasive edge computing networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(6): 1277-1292. DOI: 10.1109/TPDS.2020.3046000. [24] Farhadi V, Mehmeti F, He T, et al.Service placement and request scheduling for data-intensive applications in edge clouds[J]. IEEE/ACM Transactions on Networking, 2021, 29(2): 779-792. DOI:10.1109/TNET.2020.3048613. [25] Cao T, Wang Q H, Zhang Y H, et al.Walking on two legs: Joint service placement and computation configuration for provisioning containerized services at edges[J]. Computer Networks, 2024, 239: 110144. DOI:10.1016/j.comnet.2023.110144. [26] Tang Z H, Huang A W, Wang Y H, et al.Edge servers on wheels: deployment and route planning of mobile servers for Internet of vehicles[C]// 2023 19th International Conference on Mobility, Sensing and Networking (MSN). December 14-16, 2023, Nanjing, China. IEEE, 2023: 707-713. DOI: 10.1109/MSN60784.2023.00103. [27] Natesha B V, Guddeti R M R. Adopting elitism-based Genetic Algorithm for minimizing multi-objective problems of IoT service placement in fog computing environment[J]. Journal of Network and Computer Applications, 2021, 178: 102972. DOI:10.1016/j.jnca.2020.102972. [28] Sarrafzade N, Entezari-Maleki R, Sousa L.A genetic-based approach for service placement in fog computing[J]. The Journal of Supercomputing, 2022, 78(8): 10854-10875. DOI:10.1007/s11227-021-04254-w. [29] Maia A M, Ghamri-Doudane Y, Vieira D, et al.Dynamic service placement and load distribution in edge computing[C]//2020 16th International Conference on Network and Service Management (CNSM). November 2-6, 2020, Izmir, Turkey. IEEE, 2020: 1-9. DOI: 10.23919/CNSM50824.2020.9269059. [30] Ayoubi M, Ramezanpour M, Khorsand R.An autonomous IoT service placement methodology in fog computing[J]. Software: Practice and Experience, 2021, 51(5): 1097-1120. DOI:10.1002/spe.2939. [31] Eyckerman R, Mercelis S, Marquez-Barja J, et al.Requirements for distributed task placement in the fog[J]. Internet of Things, 2020, 12: 100237. DOI: 10.1016/j.iot.2020.100237. [32] Azizi S, Shojafar M, Farzin P, et al.DCSP: A delay and cost-aware service placement and load distribution algorithm for IoT-based fog networks[J]. Computer Communications, 2024, 215: 9-20. DOI:10.1016/j.comcom.2023.12.016. [33] Kayal P, Liebeherr J.Distributed service placement in fog computing: An iterative combinatorial auction approach[C]// 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). July 7-10, 2019, Dallas, TX, USA. IEEE, 2019: 2145-2156. DOI: 10.1109/ICDCS.2019.00211. [34] Aloqaily M, Kantarci B, Mouftah H T.Fairness-aware game theoretic approach for service management in vehicular clouds[C]// 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). September 24-27, 2017, Toronto, ON, Canada. IEEE, 2017: 1-5. DOI: 10.1109/VTCFall.2017.8288282. [35] Lera I, Guerrero C, Juiz C.Availability-aware service placement policy in fog computing based on graph partitions[J]. IEEE Internet of Things Journal, 2019, 6(2): 3641-3651. DOI: 10.1109/JIOT.2018.2889511. [36] Talpur A, Gurusamy M.DRLD-SP: A deep-reinforcement-learning-based dynamic service placement in edge-enabled Internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8): 6239-6251. DOI: 10.1109/JIOT.2021.3110913. [37] Sharma A, Thangaraj V.Intelligent service placement algorithm based on DDQN and prioritized experience replay in IoT-Fog computing environment[J]. Internet of Things, 2024, 25: 101112. DOI:10.1016/j.iot.2024.101112. [38] Ibn-Khedher H, Laroui M, Moungla H, et al.Next-generation edge computing assisted autonomous driving based artificial intelligence algorithms[J]. IEEE Access, 2022, 10: 53987-54001. DOI: 10.1109/ACCESS.2022.3174548. [39] Liu T, Ni S G, Li X Q, et al.Deep reinforcement learning based approach for online service placement and computation resource allocation in edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(7): 3870-3881. DOI: 10.1109/TMC.2022.3148254. [40] Zare M, Elmi Sola Y, Hasanpour H.Towards distributed and autonomous IoT service placement in fog computing using asynchronous advantage actor-critic algorithm[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(1): 368-381. DOI:10.1016/j.jksuci.2022.12.006. [41] Song H F, Abdolmaleki A, Springenberg J T, et al. V-MPO: On-policy maximum a posteriori policy optimization for discrete and continuous control[EB/OL].2019:1909.12238. https://arxiv.org/abs/1909.12238v1. [42] Christodoulou P. Soft actor-critic for discrete action settings[EB/OL].2019:1910.07207. https://arxiv.org/abs/1910.07207v2. [43] Mnih V, Kavukcuoglu K, Silver D, et al.Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. DOI: 10.1038/nature14236. |