欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

基于强化学习的车载边缘计算服务更新与资源分配联合优化算法*

赵润, 姚郑, 张宝贤   

  1. 中国科学院大学人工智能学院,北京 100049
  • 收稿日期:2025-04-10 修回日期:2025-05-20
  • 通讯作者: E-mail: bxzhang@ucas.ac.cn
  • 基金资助:
    *国家自然科学基金(62471455)资助

Reinforcement learning based joint service update and resource allocation optimization algorithm for vehicular edge computing

ZHAO Run, YAO Zheng, ZHANG Baoxian   

  1. School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2025-04-10 Revised:2025-05-20

摘要: 车载边缘计算是一种新兴的计算范式,它将移动边缘计算的计算能力与车辆网络的通信能力相结合,可以有效增强智能交通系统的用户体验。本文构建了一个面向城市公交系统的车载边缘计算系统架构,将服务资源和任务时延约束下的任务卸载率最大化问题建模为一个随机混合整数非线性规划问题。通过将强化学习与公交车辆的车载算力及其无线通信能力相结合,提出了一种基于在线最大后验策略优化的区段性服务更新与资源分配联合优化算法。大量仿真结果表明,与多种基线算法相比较,所提算法在提升任务卸载率方面具有显著优势。

关键词: 车载边缘计算, 服务部署, 资源分配, 强化学习

Abstract: Vehicle edge computing is a new computing paradigm, which combines the ability of mobile edge computing with vehicle network, and can effectively enhance the quality of user experience in intelligent transportation systems. In this paper, a vehicle edge computing system architecture based on urban public transport system is constructed, and the problem of maximizing the task offloading rate under service resource and task delay constraints is modeled as a stochastic mixed integer nonlinear programming problem. By combining reinforcement learning with buses' carried computing resources and also wireless communication capabilities, a joint segmental service update and resource allocation joint algorithm based on online maximum a posteriori strategy optimization is proposed. Extensive simulation results show that our proposed algorithm has significant advantages in improving the task offloading rate as compared with baseline algorithms.

Key words: vehicle edge computing, service deployment, resource allocation, reinforcement learning

中图分类号: