欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2006, Vol. 23 ›› Issue (1): 7-22.DOI: 10.7523/j.issn.2095-6134.2006.1.004

• 论文 • 上一篇    下一篇

代数偏微分方程组的对合特征集方法分析(英文)

孟晓辉 陈玉福   

  1. 1 北京市计算中心,北京 100005;

    2 中国科学院研究生院,北京 100039

  • 收稿日期:1900-01-01 修回日期:1900-01-01 发布日期:2006-01-15

Analysis of the Involutive Characteristic Set Method for Algebraic PDE Systems

MENG Xiao-Hui,CHEN Yu-Fu   

  1. 1 Beijing Municipal Computing Center, Beijing 100005, China; ]


    2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

  • Received:1900-01-01 Revised:1900-01-01 Published:2006-01-15

摘要: 基于Wu-Ritt特征集方法和V.Gerdt的对合除法, 我们定义了非线性偏微分方程组的关于一般延拓方向的对合特征集 (ICS). 影响ICS方法的两个主要因素为: 延拓方向和变量的序. 本文中, 应用ICS方法处理在计算偏微分方程组的对称群过程中产生的大型偏微分方程组. 在实验的基础上, 总结了对于ICS方法较好的延拓方向和变量的序.

关键词: 对合特征集, 可积条件, 代数偏微分方程组, Wu-Ritt 特征集方法

Abstract: Based onWu-Ritt’s characteristic set method and V. Gerdet’s involutive division method,
we defined the involutive characteristic set (abbr. ICS) for a set of non-linear PDEs with
respect to a general involutive direction. The ICS method depends on two factors: the prolongation
direction and the variable ordering. In this paper, we report an implementation
of the ICS method and use it to solve a large set of PDE systems raised from the computation
of symmetric groups for PDEs. Based on the experiments, we try to select the best
prolongation direction and the variable ordering for the ICS algorithm.

Key words: Involutive characteristic set, integrability conditions, algebraic partial differential equation system, Wu-Ritt’s characteristic set method

中图分类号: