欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2005, Vol. 22 ›› Issue (2): 210-217.DOI: 10.7523/j.issn.2095-6134.2005.2.014

• 论文 • 上一篇    下一篇

一类广义隐马尔科夫模型的建模与参数估计(英文)

胡可, 张大力   

  1. 中国科学技术大学自动化系, 合肥 230026
  • 收稿日期:2004-05-13 修回日期:2004-07-09 发布日期:2005-03-15
  • 通讯作者: 胡可,E-mail:huke@mail.ustc.edu.cn

Modeling and Parameter Estimation of a Class of General Hidden Markov Model

HU Ke, ZHANG Da-Li   

  1. Department of Automation, University of Science and Technology of China, Hefei 230026, China
  • Received:2004-05-13 Revised:2004-07-09 Published:2005-03-15

摘要:

隐马尔科夫模型在很多方面已有广泛应用.讨论了一类更为一般的模型,这类模型由WojciechPieczynski首次提出,并且给出了在图像识别中的应用.这里首次给出在离散观测和离散状态下该模型的精确数学描述,其中包括建模、状态估计和参数估计,这些算法都是首次被提出的

关键词: 测度变换, 递归参数估计, 递归状态估计, 广义隐马尔科夫模型

Abstract:

It is wel-l known that HMM has been widely used in many fields. In this paper we will discuss a more general model, which is similar to Pairwise Markov Model ( PMM) proposed by Wojciech Pieczynski. Compared to HMM, the state process here is not necessarily aMarkov chain. So it has more general applications in image segmentation, speech signal processing, and etc. We will give a complete mathemat ical description for this model with discrete states and discrete observations, including modeling,state estimation and parameter estimat ion, which haven. t been studied before. Based on the method proposed here, we will get a recursive algorithm for the estimation of the state and the parameters.

Key words: change of measure, recursive parameter est imation, recursive state estimation, General Hidden Markov Model ( GHMM)

中图分类号: