欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2019, Vol. 36 ›› Issue (3): 425-432.DOI: 10.7523/j.issn.2095-6134.2019.03.017

• 简报 • 上一篇    

社交网络关键节点检测的积极效应问题

王新栋1, 于华1, 江成2   

  1. 1. 中国科学院大学工程科学学院, 北京 100049;
    2. 首都经济贸易大学信息学院, 北京 100070
  • 收稿日期:2017-12-29 修回日期:2018-04-18 发布日期:2019-05-15
  • 通讯作者: 江成
  • 基金资助:
    国家自然科学基金(71450009)和首都经济贸易大学2018年度科研基金资助

Positive effect of key player detection in social networks

WANG Xindong1, YU Hua1, JIANG Cheng2   

  1. 1. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China;
    2. School of Information, Capital University of Economics and Business, Beijing 100070, China
  • Received:2017-12-29 Revised:2018-04-18 Published:2019-05-15

摘要: 在社交网络中,识别有影响力的关键节点对于调控网络至关重要,是网络科学最前沿热点的研究内容。然而,现有方法大多基于局部特征进行求解,缺乏对网络整体结构的建模。为有效地解决这个问题,针对社交网络关键节点检测积极效应问题KPP-POS(key player problem positive),在KPP-POS的检测指标DR的基础上,建立关键节点积极效应模型的0-1整数线性规划模型(0-1 integer linear programming key players problem positive effects model,IP-KPP-POS),进而提出一种计算复杂度较低且精确度较高的局部搜索启发式算法。最后通过多种人造网络和真实网络的实验分析,验证IP-KPP-POS模型在解决社交网络关键节点检测积极效应问题上的正确性和有效性。

关键词: 社交网络, 0-1整数线性规划, 关键节点, 网络优化, 启发式算法

Abstract: Identifying influential nodes has been one of the most intensive studies among network analysis, and it is essential to control social networks. However, most of the existing methods are based on local features and lack the modeling of the overall network structure. In order to solve the key player problem positive (KPP-POS) problem effectively, we propose a 0-1 integer linear programming model (IP-KPP-POS) based on the detection standard DR of KPP-POS. Then, we design a local search heuristic algorithm that significantly reduces the computational complexity and simultaneously achieves high accuracy. Finally, the effectiveness of our methods are validated by experiments with various synthetic networks and real-world networks.

Key words: social networks, 0-1 integer linear programming, critical nodes, network optimization, heuristic algorithm

中图分类号: