[1] Schroter T, Tautenhahn U. On the optimality of regularization methods for solving linear ill-posed problems[J]. Journal for Analysis and its Application, 1994, 13(4):697-710.
[2] Xu Y B, Pei Y, Dong F. An adaptive Tikhonov regularization parameter choice method for electrical resistance tomography[J]. Flow Measurement and Instrumentation, 2016, 50:1-12.
[3] 陈晓艳,房晓东. 一种新的正则化图像重建算法及参数优化[J]. 天津科技大学学报, 2014, 29(6):74-77.
[4] Natarajan B K. Sparse approximate solutions to linear systems[J]. Society for Industrial and Applied Mathematics, 1995, 24(2):227-234.
[5] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11):1413-1457.
[6] Bioucas-Dias J, Figueiredo M. A new TwIST:two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12):2992-3004.
[7] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202.
[8] Blumensath T, Davies M E. Iterative thresholding for sparse approximations[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6):629-654.
[9] Bredies K, Lorenz D A. Iterated hard shrinkage for minimization problems with sparsity constraints[J]. SIAM Journal on Scientific Computing, 2008, 30(2):657-683.
[10] Fornasier M, Rauhut H. Iterative thresholding algorithms[J]. Applied Computational Harmonic Analysis, 2008, 25(2):187-208.
[11] Voronin S, Woerdeman H J. A new iterative firm-thresholding algorithm for inverse problems with sparsity constraints[J]. Applied Computational Harmonic Analysis, 2013, 35(1):151-164.
[12] Dickin F, Wang M. Electrical resistance tomography for process applications[J]. Measurement Science and Technology, 1996, 7(3):247-260.
[13] Gehre M, Kluth T, Lipponen A, et al. Sparsity reconstruction in electrical impedance tomography:an experimental evaluation[J]. Journal of Computational and Applied Mathematics, 2012, 236(1):2126-2136.
[14] 董峰, 赵佳, 许燕斌,等. 用于电阻层析成像的快速自适应硬阈值迭代算法[J]. 天津大学学报, 2015, 48(4):305-310.
[15] Ye J M, Wang H G, Yang W Q. Image reconstruction for electrical capacitance tomography based on sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1):89-102.
[16] Zhao J, Xu Y B, Tan C, et al. A fast sparse reconstruction algorithm for electrical tomography[J]. Measurement Science and Technology, 2014, 25(8):085401. |