欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2022, Vol. 39 ›› Issue (4): 512-523.DOI: 10.7523/j.ucas.2020.0040

• 电子信息与计算机科学 • 上一篇    下一篇

基于不同骨架UNet++网络的建筑物提取

古煜民1,2, 阎福礼1   

  1. 1. 中国科学院空天信息创新研究院, 北京 100094;
    2. 中国科学院大学资源与环境学院, 北京 100190
  • 收稿日期:2020-05-12 修回日期:2020-08-14 发布日期:2021-06-01
  • 通讯作者: 阎福礼
  • 基金资助:
    国家重点研发计划项目(2018YFC0213600和2016YFB0501505)资助

Building extraction based on UNet++ network with different backbones

GU Yumin1,2, YAN Fuli1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2. College of Resources and Environment, University Academy of Sciences, Beijing 100190, China
  • Received:2020-05-12 Revised:2020-08-14 Published:2021-06-01

摘要: 基于深度学习方法的建筑物自动提取具有精度高、速度快的技术特点,对城市规划、防灾减灾等的行业应用具有重要意义。针对高分辨率遥感影像建筑物自动提取,引入深度学习特征功能模块和传统遥感应用技术验证环节,形成不同骨架模块、UNet++网络和真实性检验的建筑物遥感提取功能模块嵌合的深度学习业务化应用技术体系,通过VGG、ResNet和Inception等传统卷积网络模型骨架对基础网络进行改造,提升模型运行效率,强化模型特征学习能力,通过真实性检验验证算法的有效性、适用性,展示完整的遥感应用技术链条。以Mnih公开的马萨诸塞州建筑物数据集为数据源,和传统非全卷积网络模型和全卷积网络模型等方法进行对比分析,结果表明通过增加模型深度和宽度可以有效提升模型建筑物提取效果,基于InceptionV3-UNet++骨架模型在召回率、准确度、CSI、F1分数、Kappa系数和总精度表现最为优秀,分别达到85.14%、90.50%、0.7816、0.8774、0.8504和95.57%,并在WHU数据集上验证了它的鲁棒性。该方法在建筑物提取结果和细节上都有显著提高,特别是对复杂不规则建筑物的提取上,将极大促进真实、复杂、大场景高分辨率影像的建筑物提取遥感应用。

关键词: 深度学习, 高分辨率遥感影像, 卷积神经网络, 建筑物提取, 图像分割

Abstract: Automatic building extraction methods based on deep learning theory have the technical characteristics of high accuracy and speed,and are of great significance in industrial applications, such as urban planning,disaster prevention and mitigation. This paper introduces the deep learning modules and the traditional remote sensing validation section in the proposed building extraction method in high-resolution remote sensing imageries, forming an operational deep-learning-theory based building extraction technical system that integrates different backbone modules, UNet + + networks,and remote sensing authenticity verification modules. The basic network is transformed through the traditional convolutional network model backbones,such as VGG,ResNet, and Inception to improve the model operational efficiency,strengthen the model feature learning capabilities,verify the effectiveness and applicability of the algorithm through authenticity validation. Taking the Massachusetts building dataset published by Mnih as the data source,a comparative analysis was carried out with the traditional non-full convolutional network model and full convolutional network model. The results show that an increasing in the depth and width of the model can substantially improve the building extraction results. The InceptionV3-UNet + + backbone model has the best performance in recall rate,accuracy,CSI,F1 score,Kappa coefficients, and total accuracy,reaching 85. 14%,90. 50%,0. 781 6,0. 877 4,0. 850 4, and 95. 57%,respectively,and its robustness is also verified on the WHU datasets. This method has significantly improved the extraction accuracy and the details of the buildings extracted, especially on complex and irregular buildings, which will facilitate the building extraction applications in real, complex, and large scene of high-resolution remote sensing imageries.

Key words: deep learning, high-resolution remote sensing image, convolutional neural network, building extraction, image segmentation

中图分类号: