欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

多重残差网络的多光谱遥感图像锐化方法*

周庆泽1,2, 郭擎1†   

  1. 1 中国科学院空天信息创新研究院, 北京 100094;
    2 中国科学院大学 电子电气与通信工程学院, 北京 100049
  • 收稿日期:2023-07-27 修回日期:2023-11-01 发布日期:2023-12-12
  • 通讯作者: E-mail:guoqing@aircas.ac.cn
  • 基金资助:
    * 国家自然科学基金项目(编号:61771470)资助

Multispectral remote sensing image pan-sharpening method based on multi-residual network

ZHOU Qingze1,2, GUO Qing1†   

  1. 1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-07-27 Revised:2023-11-01 Published:2023-12-12

摘要: 针对传统的遥感图像锐化方法通常会导致锐化图像光谱失真的问题与目前基于深度学习的锐化方法利用网络层之间信息不充分的问题,本文结合深度卷积神经网络和残差网络的特性,提出一种多重残差网络的多光谱遥感图像锐化方法。本文方法利用深度卷积网络和残差网络,设计深度残差模块,通过堆叠深度残差模块来提取图像深次层的空间和光谱特征,同时利用残差建立起子块与子块之间的跳跃连接,将梯度信息传递到更深的网络,避免梯度爆炸问题,使网络更加的高效。实验基于WorldView-2的多光谱图像和全色图像进行模拟实验与真实实验,将实验结果与传统方法和现有深度学习方法进行比较。结果表明,本文方法改善了传统方法存在的光谱失真现象;相较于现有的深度学习方法,本文方法能够学习到更深层次的图像特征,更好地保留了图像的空间与光谱信息,本文方法的全局相对光谱损失(error relative globale adimensionnelle de synthèse,ERGAS)、光谱角映射(spectral angle mapper,SAM)、空间相关系数(spatial correlation coefficient,SCC)、整体质量评价指标(universal image quality index,UIQI)和全局融合质量评价指标(${{Q}^{2n}}$)分别比深度卷积锐化网络方法提高了24.3%、26.7%、6.2%、4.6%、6.3%。通过主观视觉评价、客观定量评价和光谱曲线表明,本文方法相比于传统的锐化算法以及常用的深度学习锐化算法,在空间分辨率和光谱分辨率上都有显著的提升,特别是对于地物环境复杂条件下的遥感图像。

关键词: 遥感图像锐化方法, 深度学习, 多光谱遥感图像, 卷积神经网络, 残差网络

Abstract: This paper proposes a multi-spectral remote sensing image sharpening method based on a deep convolutional neural network and residual network. The method addresses the problems of spectral distortion in traditional remote sensing image sharpening methods and insufficient information utilization between network layers in current deep learning-based methods. The proposed method uses the depth convolution and residual network to design the depth residual module to extract the spatial and spectral features of the deep image. Additionally, residual connections between sub-blocks are established to transmit gradient information to deeper networks and avoid gradient explosion problems, making the network more efficient. Experiments are conducted on simulated and real-world multi-spectral images from WorldView-2, and the results are compared with traditional and existing deep learning-based methods. The proposed method improves the spectral distortion phenomenon and learns deeper image features to better preserve the spatial and spectral information of the image. The proposed method outperforms the deep convolutional sharpening network method in terms of various evaluation metrics, including ERGAS, SAM, SCC, UIQI, and the global fusion quality evaluation index. The proposed method improves these metrics by 24.3%, 26.7%,6.2%,4.6% and 6.3% respectively. Subjective and objective evaluations and spectral curve also indicate that the proposed method significantly improves the spatial and spectral resolution of remote sensing images, especially under complex environmental conditions.

Key words: remote sensing image pan-sharpening method, deep learning, multispectral remote sensing image, convolutional neural network, residual network

中图分类号: